Skip to main content
Log in

The simultaneous use of 4×4 and 2×2 bilinear stress elements for viscoelastic flows

  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Mixed finite elements for viscoelastic flows based on a 4×4 sub-linear interpolation for the extra stress components satisfy the Babuska-Brezzi condition and are highly stable. They have been proved to be quite satisfactory in solving problems with strong stress boundary layers. In this work, we examine the simultaneous use of 4×4 and 2×2 bilinear stress elements in an attempt to reduce the computational cost without sacrificing the accuracy. The 4×4 bilinear elements are employed in regions where the stress field is anticipated to be steep while the 2×2 elements carry the burden elsewhere with a much smaller number of stress nodes. Additional constraints along the sides shared by different elements are necessary in order to preserve conformity. The method is applied to the creeping flow of a Maxwell fluid around a sphere falling along the axis of a cylindrical tube. Results are given for three mixed finite element formulations: the Galerkin method, the consistent streamline-upwind/Petrov-Galerkin method (SUPG) and the non-consistent streamline-upwind method (SU). Particular emphasis is given on the calculated drag correction factors. The effect of the sphere/cylinder diameter ratio is also examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acharya, A.; Mashelkar, R. A.; Ulbrecht, J.: Flow of inelastic and viscoelastic fluids past a sphere. I Drag coefficient in creeping and boundary-layer flows. Rheol. Acta. 15, 454–470

  • Babuska, I. (1973): The finite element method with Lagrange multipliers. Numer. Math. 20, 179–192

    Google Scholar 

  • Brezzi, F. (1974): On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. RAIRO Num. Analysis. 8-R2, 129–151

    Google Scholar 

  • Brooks, A. N.; Hughes, T. J. R. (1982): Streamline-upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comp. Meth. Appl. Mech. Eng. 32, 199–259

    Google Scholar 

  • Broadbent, J. M.; Mena, B. (1974): Slow flow of an elasto-viscous fluid past cylinders and spheres. Chem. Eng. J. 8, 11–19

    Google Scholar 

  • Carew, E. O. A.; Townsend, P. (1988): Non-Newtonian flow past a sphere in a long cylindrical tube. Rheol. Acta. 27, 125–129

    Google Scholar 

  • Caswell, B.; Schwarz, W. H. (1962): The creeping motion of a non-Newtonian fluid past a sphere. J. Fluid Mech. 13, 417–426

    Google Scholar 

  • Chhabra, R. P.; Uhlherr, P. H. T.; Boger, D. V. (1980): The influence of fluid elasticity on the drag coefficient of spheres. J. Non-Newtonian Fluid Mech. 6, 187–199

    Google Scholar 

  • Chhabra, R. P.; Uhlherr, P. H. T. (1988): The influence of fluid elasticity on wall effects for creeping sphere motion in cylindrical tubes. Can. J. Chem. Eng. 66, 154–157

    Google Scholar 

  • Chilcott, M. D.; Rallison, J. M. (1988): Creeping flow of dilute polymer solutions past cylinders and spheres. J. Non-Newtonian Fluid Mech. 29, 381–432

    Google Scholar 

  • Chmielewski, C.; Nichols, K. L.; Jayaraman, K. (1990): A comparison of the drag coefficients of spheres translating in corn-syrup-based and polybutene-based Boger fluids. J. Non-Newtonian Fluid Mech. 35, 37–47

    Google Scholar 

  • Crochet, M. J.; Davies, A. R.; Walters, K. (1984). Numerical simulation of non-Newtonian flow. Elsevier, New York and Amsterdam

    Google Scholar 

  • Crochet, M. J. (1989): Numerical simulation of viscoelastic flow: a review. In: Rubber Chemistry and Technology, Rubber Reviews. Amer. Chem. Soc. 62, 426–455

  • Crochet, M. J.; Delvaux, V.; Marchal, J. M. (1990): Numerical simulation of highly viscoelastic flows through an abrupt contraction. J. Non-Newtonian Fluid Mech. 34, 261–268

    Google Scholar 

  • Crochet, M. J.; Legat, V. (1992): The consistent streamline-upwind/Petrov-Galerkin method for viscoelastic flow revisited. J. Non-Newtonian Fluid Mech. 42, 283–299

    Google Scholar 

  • Fortin, M.; Pierre, R. (1989): On the convergence of the mixed method of Crochet and Marchal for viscoelastic flows. Comp. Meth. Appl. Mech. Eng. 73, 341–350

    Google Scholar 

  • Gervang, B.; Davies, A. R.; Phillips, T. N. (1992): On the simulation of viscoelastic flow past a sphere using spectral methods. Int. J. Numer. Methods. Fluids. (to appear)

  • Giesekus, H. (1963): Rheol. Acta. 3, 59

    Google Scholar 

  • Harlen, O. G. (1990): High-Deborah-number flow of a dilute polymer solution past a sphere falling along the axis of a cylindrical tube. J. Non-Newtonian Fluid Mech. 37, 157–173

    Google Scholar 

  • Hassager, O.; Bisgaard, C. (1983): A Lagrangian finite element method for the simulation of flow on non-Newtonian liquids. J. Non-Newtonian Fluid Mech. 12, 153–164

    Google Scholar 

  • Keunings, R. (1989): Simulation of viscoelastic fluid flow. In: Tucker, III, C.L. (ed): Chapter 9 in Fundamentals of computer modeling for polymer processing. Hanser Publishers, Munich. 403–469

    Google Scholar 

  • Leslie, F. M. (1961): The slow flow of a visco-elastic liquid past a sphere. Quart. J. Mech. Appl. Math. 14, 36–48

    Google Scholar 

  • Lunsmann, W.; Brown, R. A.; Armstrong, R. C. (1992): J. Non-Newtonian Fluid Mech. (to appear)

  • Marchal, J. M.; Crochet, M. J.; Keunings, R. (1984): Adaptive refinement for calculating viscoelastic flows. In: Carey, G. F.; Oden, J. T. (eds): Proceedings of the Fifth International Symposium on Finite Elements and Flow Problems. Austin, Texas, January. 473–478

  • Marchal, J. M.; Crochet, M. J. (1987): A new mixed finite element for calculating viscoelastic flow. J. Non-Newtonian Fluid Mech. 26, 77–114

    Google Scholar 

  • Mena, B.; Caswell, B. (1974): Slow flow of an elastic-viscous fluid past an immersed body. Chem. Eng. J. 8, 125–134

    Google Scholar 

  • Mena, B.; Manero, O.; Leal, L. G. (1987): The influence of rheological properties on the slow flow past spheres. J. Non-Newtonian Fluid Mech. 26, 247–275

    Google Scholar 

  • Sugeng, F.; Tanner, R. I. (1986): The drag on spheres in viscoelastic fluids with significant wall effects. J. Non-Newtonian Fluid Mech. 20, 281–292

    Google Scholar 

  • Tiefenbruck, G.; Leal, L. G. (1982): A numerical study of the motion of a viscoelastic fluid past rigid spheres and spherical bubbles. J. Non-Newtonian Fluid Mech. 10, 115–155

    Google Scholar 

  • Tirtaatmadja, V.; Uhlherr, P. H. T.; Sridhar, T. (1990): Creeping motion of spheres in fluid M1. J. Non-Newtonian Fluid Mech. 35, 327–337

    Google Scholar 

  • Zheng, R.; Phan-Thien, N.; Tanner, R. I. (1990): On the flow past a sphere in a cylindrical tube: limiting Weissenberg number. J. Non-Newtonian Fluid Mech. 36, 27–49

    Google Scholar 

  • Zheng, R.; Phan-Thien, N.; Tanner, R. I. (1991): On the flow past a sphere in a cylindrical tube: effects of inertia, shear-thinning and elasticity. Rheol. Acta. 30, 499–510

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by T. E. Tezduyar, August 6, 1992

Rights and permissions

Reprints and permissions

About this article

Cite this article

Georgiou, G.C., Crochet, M.J. The simultaneous use of 4×4 and 2×2 bilinear stress elements for viscoelastic flows. Computational Mechanics 11, 341–354 (1993). https://doi.org/10.1007/BF00350092

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00350092

Keywords

Navigation