Skip to main content
Log in

Determination of ammonium uptake and regeneration rates using the seawater dilution method

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

We have developed a method for the determination of ammonium uptake and regeneration rates applying the principle of the seawater dilution technique. The method is based on the separation of uptake and regeneration processes in the dilution series. A model is used to estimate ammonium uptake and regeneration rates simultaneously, in addition to phytoplankton growth and grazing rates. The method was applied to dilution experiments conducted during a two-year study of the upwelling region off Oregon, USA. Ammonium uptake and regeneration rates determined with our method ranged from 0.5 to 3 μmol l-1d-1 and from 0.2 to 2.9 μmol l-1d-1, respectively. These values agree well with those from other studies applying 15N tracer techniques in the same or similar environments. We found a close coupling between ammonium uptake and regeneration, and a strong relationship between ammonium regeneration and grazing rates. In addition, the nutritional status of the phytoplankton community could be assessed by comparing instantaneous ammonium uptake rates with the specific phytoplankton growth rates. Using the dilution technique to determine ammonium uptake and regeneration rates of the plankton community is a promising alternative to the application of tracer techniques conventionally used to determine these rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Andersen, T., Schartau, A. K. L., Paasche, E. (1991). Quantifying external and internal nitrogen and phosphorus pools, as well as nitrogen and phosphorus supplied through remineralization, in coastal marine plankton by means of a dilution technique. Mar. Ecol. Prog. Ser. 69: 67–80

    Google Scholar 

  • Burkill, P. H., Mantoura, R. F. C., Llewellyn, C. A., Owens, N. J. P. (1987). Microzooplankton grazing and selectivity of phytoplankton in coastal waters. Mar. Biol. 93: 581–590

    Google Scholar 

  • Caron, D. A., Goldman, J. C. (1990). Protozoan nutrient regeneration. In: Capriulo, G. M. (ed.) Ecology of marine Protozoa. Oxford University Press, New York, p. 283–306

    Google Scholar 

  • Chan, A. T. (1978). Comparative physiological study of marine diatoms and dinoflagellates in relation to irradiance and cell size. I. Growth under continuous light. J. Physiol. 14: 396–402

    Google Scholar 

  • Chan, A. T. (1980). Comparative physiological study of marine diatoms and dinoflagellates in relation to irradiance and cell size. II. Relationship between photosynthesis, growth, and carbon /chlorophyll a ratio. J. Phycol. 16: 428–432

    Google Scholar 

  • Dugdale, R. C., Goering, J. J. (1967). Uptake of new and regenerated forms of nitrogen in primary productivity. Limnol. Oceanogr. 12: 196–206

    Google Scholar 

  • Evans, G. T., Paranjape, M. A. (1992). Precision of estimates of phytoplankton growth and microzooplankton grazing when the functional response of grazers may be nonlinear. Mar. Ecol. Prog. Ser. 80: 285–290

    Google Scholar 

  • Gallegos, C. L. (1989). Microzooplankton grazing on phytoplankton in the Rhode River, Maryland: nonlinear feeding kinetics. Mar. Ecol. Prog. Ser. 57: 23–33

    Google Scholar 

  • Gifford, D. J. (1988). Impact of grazing by microzooplankton in the Northwest Arm of Halifax Harbour, Nova Scotia. Mar. Ecol. Prog. Ser. 47: 249–258

    Google Scholar 

  • Glibert, P. M. (1988). Primary productivity and pelagic nitrogen cycling. In: Blackburn, T. H., Sørensen, J. (eds.) Nitrogen cycling in coastal marine environments. John Wiley & Sons Ltd, London, p. 3–31

    Google Scholar 

  • Goldman, J. C. (1984). Conceptual role for microaggregates in pelagic waters. Bull. mar. Sci. 35: 462–476

    Google Scholar 

  • Goldman, J. C., Caron, D. A. (1985). Experimental studies on an omnivorous microflagellate: implications for grazing and nutrient regeneration in the marine microbial food chain. Deep-Sea Res. 32: 899–915

    Google Scholar 

  • Grasshoff, K., Ehrhardt, M., Kremling, K. (1983). Methods of seawater analysis. Verlag Chemie, Weinheim

    Google Scholar 

  • Horrigan, S. G., Hagstrøm, Å., Koike, I., Azam, F. (1988). Inorganic nutrient utilization by assemblages of marine bacteria in seawater culture. Mar. Ecol. Prog. Ser. 50: 147–150

    Google Scholar 

  • Kokkinakis, S. A., Wheeler, P. A. (1987). Nitrogen uptake and phytoplankton growth in coastal upwelling regions. Limnol. Oceanogr. 32: 1112–1123

    Google Scholar 

  • Kokkinakis, S. A., Wheeler, P. A. (1988). Uptake of ammonium and urea in the northeast Pacific: comparison between netplankton and nanoplankton. Mar. Ecol. Prog. Ser. 43: 113–124

    Google Scholar 

  • Landry, M. R., Haas, L. W., Fagerness, V. L. (1984). Dynamics of microbial plankton communities: experiments in Kaneohe Bay, Hawaii. Mar. Ecol. Prog. Ser. 16: 127–133

    Google Scholar 

  • Landry, M. R., Hassett, R. P. (1982). Estimating the grazing impact of marine micro-zooplankton. Mar. Biol. 67: 283–288

    Google Scholar 

  • Neuer, S. (1992). Role of protist grazing in the Oregon upwelling system. Ph. D. thesis. Oregon State University, Corvallis

    Google Scholar 

  • Paasche, E. (1988). Pelagic primary production in nearshore waters. In: Blackburn, T. H., Sørensen, J. (eds.) Nitrogen cycling in coastal marine environments. J. Wiley & Sons, London, p. 33–57

    Google Scholar 

  • Paasche, E., Kristiansen, S. (1982). Ammonium regeneration by microzooplankton in the Oslofjord. Mar. Biol. 69: 55–63

    Google Scholar 

  • Price, N. M., Andersen, L. F., Morel, F. M. M. (1991). Iron and nitrogen nutrition of equatorial Pacific plankton. Deep-Sea Res. 38: 1361–1378

    Google Scholar 

  • Probyn, T. A. (1987). Ammonium regeneration by microplankton in an upwelling environment. Mar. Ecol. Prog. Ser. 37: 53–64

    Google Scholar 

  • Small, L. F., Menzies, D. W. (1981). Patterns of primary productivity and biomass in a costal upwelling region. Deep-Sea Res. 28: 123–149

    Google Scholar 

  • Strom, S. L., Welschmeyer, N. A. (1991). Pigment-specific rates of phytoplankton growth and microzooplankton grazing in the open subarctic Pacific Ocean. Limnol. Oceanogr. 36: 50–63

    Google Scholar 

  • Wheeler, P. A., Kirchman, D. L. (1986). Utilization of inorganic and organic nitrogen by bacteria in marine systems. Limnol. Oceanogr. 31: 998–1009

    Google Scholar 

  • Wheeler, P. A., Kirchman, D. L., Landry, M. R., Kokkinakis, S. A. (1989). Diel periodicity in ammonium uptake and regeneration in the oceanic subarctic Pacific: implications for interactions in microbial food-webs. Limnol. Oceanogr. 34: 1025–1033

    Google Scholar 

  • Wheeler, P. A., Kokkinakis, S. A. (1990). Ammonium recycling limits nitrate use in the oceanic subarctic Pacific. Limnol. Oceanogr. 35: 1267–1278

    Google Scholar 

  • Whiteledge, T. E., Veidt, D. M., Malloy, S. C., Patton, C. J., Wirick, C. D. (1986). Automated nutrient analyses in seawater. Brookhaven National Laboratory, Upton, New York (Rep. No. BNL 38990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by M. G. Hadfield, Honolulu

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neuer, S., Franks, P.J.S. Determination of ammonium uptake and regeneration rates using the seawater dilution method. Marine Biology 116, 497–505 (1993). https://doi.org/10.1007/BF00350067

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00350067

Keywords

Navigation