Journal of Materials Science

, Volume 29, Issue 21, pp 5607–5611 | Cite as

Thermochemical modelling in CO2 laser cutting of carbon steel

  • M. J. Hsu
  • P. A. Molian


A thermochemical heat transfer model in oxygen-assisted laser cutting of carbon steel has been developed in terms of the laser mode pattern, the power density, combustion reaction, kerf width and cutting speed. This model emphasizes the chemical combustion effect as well as the laser mode pattern, which are usually neglected by most existing laser cutting models. Good agreement was obtained between theoretical and experimental results, indicating that approximately 55–70% of the cutting energy is supplied by the combustion reaction of the steel with oxygen, which is consistent with experimental data obtained by other investigators.


Polymer Combustion Heat Transfer Power Density Carbon Steel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Focused laser beam diameter (m)




Heat of combustion (J kg−1)


Power density (Wm−2)


Thermal diffusivity (m2s−1)


Thermal conductivity (Wm−1K−1)


Modified Bessel function of the second kind and zeroth order


Workpiece thickness (m)


Laser power (W)


Heat rate (W)


q/l∶ heat rate per unit length (Wm−1)


Half the kerf width (m)


VR/2α∶ normalized cutting speed


Melting temperature (K)


Room temperature (K)

T(x, y)

Temperature at (x, y) (K)


Cutting speed (ms−1)


2R∶ kerf width (m)

x, y, z

Cartesian co-ordinates


Thermal diffusivity (m2 s−1)


Average thickness of liquid melt film (m)


Combustion efficiency

θ, γ

Polar co-ordinates


Material density (kgm−3)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. BELFORTE, in “The Laser Marketplace in 1988”, Vol. 950 (Society of Photo Instrumentation Engineers) pp. 77–85.Google Scholar
  2. 2.
    J. F. READY, “Effects of High Power Laser Radiation” (Academic Press, New York, 1971).Google Scholar
  3. 3.
    J. N. KAMALU, and W. N. STEEN, in “Laser Materials Processings”, edited by M. Bass (North-Holland Publishing Company, 1983) Chap. 2.Google Scholar
  4. 4.
    W. W. DULEY and J. N. GONSALVES, Can. J. Phys. 50 (1972) 215.CrossRefGoogle Scholar
  5. 5.
    D. SCHUöCKER and W. ABEL, in “Proceedings of Society of Photo Instrumentation Engineers” Sept. 1983 (Society of Photo Instrumentation Engineers, 1983) pp. 88–95.Google Scholar
  6. 6.
    D. SCHUöCKER and B. WALTER, in Institute of Physics Conference Series No. 72 (Inst. Physics, 1984) pp. 111–116.Google Scholar
  7. 7.
    D. SCHUöCKER, in “Proceedings of Society of Photo Instrumentation Engineers”, Vol. 650 (Society of Photo Instrumentation Engineers, 1986) pp. 210–219.Google Scholar
  8. 8.
    M. F. MODEST and H. ABAKIANS, ASME J. Heat Transfer 108 (1986) 597.CrossRefGoogle Scholar
  9. 9.
    G. CHRYSSOLOURIS, P. SHENG and W. C. CHOI, Trans. ASME J. Engng Mater. Technol. 112 (1990) 387.CrossRefGoogle Scholar
  10. 10.
    G. CHRYSSOLOURIS, “Laser Machining Theory and Practice” (Springer-Verlag, New York, 1991).CrossRefGoogle Scholar
  11. 11.
    H. ABAKIANS and M. F. MODEST, ASME J. Heat Transfer 100 (1988) 924.CrossRefGoogle Scholar
  12. 12.
    S. Y. BAND and M. F. MODEST, ibid. 113 (1991) 663.CrossRefGoogle Scholar
  13. 13.
    S. ROY and M. F. MODEST, J. Thermophys. & Heat Transfer 4 (1990) 199.CrossRefGoogle Scholar
  14. 14.
    S. BIYIKLI and M. F. MODEST, ASME J. Heat Transfer 110 (1988) 529.CrossRefGoogle Scholar
  15. 15.
    N. FORBES, in “Laser 1975 OptoElectronics Conference Proceedings”, Munich, 1975.Google Scholar
  16. 16.
    A. IVARSON, J. POWELL and C. MAGNUSSON, J. Laser Appns. 3 (1991) 41.CrossRefGoogle Scholar
  17. 17.
    D. BELFORTE, “Industrial Laser Annual Handbook” (Pennwell Books, Tulsa, OK, 1990).Google Scholar
  18. 18.
    K. A. BUNTING and G. CORNFIELD, Trans. ASME J. Heat Transfer (1973) 116.Google Scholar
  19. 19.
    V. P. BABENKO and P. TYCHINSKII, Soviet J. Quantum Electronics 2 (1973) 399.CrossRefGoogle Scholar
  20. 20.
    Y. ARATA, and I. MIYAMOTO, Trans. JWRI 3 (1974) 1.CrossRefGoogle Scholar
  21. 21.
    M. VICANEK and G. SIMON, J. Appl. Phys. 20 (1987) 1191.Google Scholar
  22. 22.
    J. F. READY, ibid. 36 (1965) 462.CrossRefGoogle Scholar
  23. 23.
    S. CHARSCHAN, “Lasers in Industry”, (Van Norstrand Reinhold, New York, 1972).Google Scholar
  24. 24.
    D. M. ROESSLER and V. G. GREGSON, Appl. Opt. 17 (1978) 992.CrossRefGoogle Scholar
  25. 25.
    H. S. CARSLAW and J. C. JAEGER, “Conduction of Heat in Solids” (Clarendon Press, Oxford, 1959).Google Scholar
  26. 26.
    D. SCHUöKER, in “Proceedings of Society of Photo Instrumentation Engineers”, Vol. 952, (Society of Photo Instrumentation Engineers, 1988) pp. 592–599.Google Scholar
  27. 27.
    Y. ARATA, “Plasma, Electron and Laser Beam Technology” (American Society for Metals, Metals Park, OH, 1986) pp. 526–536.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • M. J. Hsu
    • 1
  • P. A. Molian
    • 1
  1. 1.Mechanical Engineering DepartmentIowa State UniversityAmesUSA

Personalised recommendations