Skip to main content

Advertisement

Log in

Photosynthetic utilization of CO2(aq) and HCO -3 in Thalassia testudinum (Hydrocharitaceae)

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The effects of total dissolved inorganic carbon (DIC), free carbon dioxide [CO2(aq)], and bicarbonate (HCO -3 ) concentrations on net photosynthetic oxygen evolution of the marine angiosperm Thalassia testudinum Banks ex König collected from Biscayne Bay (1988) and from Tampa Bay (1990), Florida, USA, were examined. Rates of photosynthesis declined by 85% from pH 7.25 to 8.75 in buffered seawater media with constant DIC concentration (2.20 mM), suggesting a strong influence of CO2(aq) concentration. A plateau in the pH-response curve between pH 7.75 and 8.50 indicated possible utilization of HCO -3 . Responses of photosynthesis measured in buffered seawater media of varying DIC concentrations (0.75 to 13.17 mM) and pH (7.8 to 8.61) demonstrated that photosynthesis is rate-limited at ambient DIC levels. Photosynthesis increased in media with increasing HCO -3 concentrations but near-constant CO2(aq) levels, confirming HCO -3 assimilation. Calculated half-saturation constants (K s )for CO2(aq) and HCO -3 indicated a high affinity for the former [K s (CO2)=3 to 18 μM] and a much lower affinity for the latter [K s (HCO -3 )=1.22 to 8.88 mM]. Calculated V max values for HCO -3 were generally higher than those for CO2(aq), suggesting relatively efficient HCO -3 utilization, despite the apparent low affinity for this carbon form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Abel, K. (1984). Inorganic carbon source for photosynthesis in the seagrass Thalassia hemprichii (Ehrenb.) Aschers. Pl. Physiol. 76: 776–781

    Google Scholar 

  • Allen, E. D., Spence, D. H. N. (1981). The differential ability of aquatic plants to utilize the inorganic carbon supply in fresh waters. New Phytol. 87: 269–283

    Google Scholar 

  • Andrews, T. J., Abel, K. M. (1979). Photosynthetic carbon metabolism in seagrasses. 14C labelling evidence for the C3 pathway. Pl. Physiol. 63: 650–656

    Google Scholar 

  • Beer, S. (1989). Photosynthesis and photorespiration of marine angiosperms. Aquat. Bot. 34: 153–166

    Google Scholar 

  • Beer, S., Eschel, A., Waisel, Y. (1977). Carbon metabolism in seagrasses. I. Utilization of exogenous inorganic carbon species in photosynthesis. J. exp. Bot. 28: 1180–1189

    Google Scholar 

  • Beer, S., Shomer-Ilan, A., Waisel, Y. (1980). Carbon metabolism in seagrasses. II. Patterns of photosynthetic CO2 incorporation. J. exp. Bot. 31: 1019–1026

    Google Scholar 

  • Beer, S., Waisel, Y. (1979). Some photosynthetic carbon fixation properties of seagrasses. Aquat. Bot. 7: 129–138

    Google Scholar 

  • Benedict, C. R., Scott, J. R. (1976). Photosynthetic carbon metabolism of a marine grass. Pl. Physiol. 57: 876–880

    Google Scholar 

  • Benedict, C. R., Wong, W. W., Wong, J. H. (1980). Fractionation of the stable isotopes of inorganic carbon by seagrasses. Pl. Physiol. 65: 512–517

    Google Scholar 

  • Black, M. A., Maberly, S. C., Spence, D. H. N. (1981). Resistance to carbon dioxide fixation in four submerged freshwater macrophytes. New Phytol. 89: 557–568

    Google Scholar 

  • Bowes, G. (1985). Aquatic plant photosynthesis: strategies that enhance carbon gain. In: Crawford, R. M. M. (ed.) Plant life in aquatic and amphibious habitats. Blackwell Scientific Publications, Oxford, p. 79–98 (Spec. Publ. Br. Ecol. Soc. No. 5)

    Google Scholar 

  • Bowes, G., Salvucci, M. E. (1989). Plasticity in the photosynthetic carbon metabolism of submersed aquatic macrophytes. Aquat. Bot. 34: 233–266

    Google Scholar 

  • Brouns, J. J. P. M. (1985). A comparison of the annual production and biomass in three monospecific stands of the seagrass Thalassia hemprichii (Ehrenb.) Aschers. Aquat. Bot. 23: 149–175

    Google Scholar 

  • Browse, J. A., Dromgoole, F. I., Brown, J. M. A. (1979). Photosynthesis in the aquatic macrophyte Egeria densa. III. Gas exchange studies. Aust. J. Pl. Physiol. 6: 499–512

    Google Scholar 

  • Dawes, C. J., Tomasko, D. A. (1988). Depth distribution of Thalassia testudinum in two meadows on the west coast of Florida; a difference in effect of light availability. Pubbl. Staz. zool. Napoli (I: Mar. Ecol.) 9: 123–130

    Google Scholar 

  • Dowd, J. E., Riggs, D. S. (1965). A comparison of estimates of Michaelis-Menten kinetic constants from various linear transformations. J. biol. Chem. 240: 863–869

    Google Scholar 

  • Goldsworthy, A. (1968). Comparison of the kinetics of photosynthetic carbon dioxide fixation in maize, sugarcane, and its relation to photorespiration. Nature, Lond. 217: p. 6

    Google Scholar 

  • Good, N. E., Izawa, S. (1972). Hydrogen ion buffers. Meth. Enzym. 24: 53–68

    Google Scholar 

  • Helder, R. J. (1988). A quantitative approach to the inorganic carbon system in aqueous media used in biological research; dilute solutions isolated from the atmosphere. Pl., Cell Environ. 11: 211–230

    Google Scholar 

  • Larkum, A. W. D., Roberts, G., Kuo, J., Strother, S. (1989). Gaseous movement in seagrasses. In: Larkum, A. W., McComb, A. J., Shepard, S. A. (eds.) Biology of seagrasses. Elsevier, Amsterdam, p. 686–722

    Google Scholar 

  • Lucas, W. J. (1977). Analogue inhibition of the active HCO -3 transport site in the Characean plasma membrane. J. exp. Bot. 28: 1321–1337

    Google Scholar 

  • Lucas, W. J. (1983). Photosynthetic assimilation of exogenous HCO -3 by aquatic plants. A. Rev. Pl. Physiol. 34: 71–104

    Google Scholar 

  • McRoy, C. P., McMillan, C. (1977). Production ecology and physiology of seagrasses. In: McRoy, C. P., Helferich, C. (eds.) Seagrass ecosystems — a scientific perspective. Marcel Dekker, New York, p. 53–87

    Google Scholar 

  • Mehrbach, C., Culberson, C. H., Hawley, J. E., Pytkowicz, R. M. (1973). Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol. Oceanogr. 18: 897–907

    Google Scholar 

  • Miller, A. G., Espie, G. S., Canvin, D. T. (1990). Physiological aspects of CO2 and HCO -3 transport by cyanobacteria: a review. Can. J. Bot. 68: 1291–1302

    Google Scholar 

  • Millhouse, J., Strother, S. (1986). The effect of pH on the inorganic carbon source for photosynthesis in the seagrass Zostera muelleri Irmisch ex Aschers. Aquat. Bot. 24: 199–209

    Google Scholar 

  • O'Leary, M. H. (1988). Carbon isotopes in photosynthesis, BioSci. 38: 328–336

    Google Scholar 

  • Park, P. K. (1969). Oceanic CO2 system: an evaluation of ten methods of investigation. Limnol. Oceanogr. 14: 179–186

    Google Scholar 

  • Prins, H. B. A., Elzenga, J. T. M. (1989). Bicarbonate utilization: function and mechanism. Aquat. Bot. 34: 59–83

    Google Scholar 

  • Prins, H. B. A., Snel, J. F. H., Zanstra, P. E., Helder, R. J. (1982). The mechanism of bicarbonate assimilation by the polar leaves of Potamogeton and Elodea. CO2 concentrations at the leaf surface. Pl., Cell Envir. 5: 207–214

    Google Scholar 

  • Prins, H. B. A., Zanstra, P. E. (1985). Bicarbonate assimilation in aquatic angiosperms. Significance of the apoplast and unstirred layer. Verh. int. Verein. Limnol. 22: 2962–2976

    Google Scholar 

  • Raven, J. A. (1970). Exogenous inorganic carbon sources in plant photosynthesis. Biol. Rev. 45: 167–221

    Google Scholar 

  • Raven, J. A. (1984). Energetics and transport in aquatic plants. MBL lectures in biology. Vol. 4. Allan R. Liss, New York

    Google Scholar 

  • Salvucci, M. E., Bowes, G. (1982). Photosynthetic and photorespiratory responses of the aerial and submerged leaves of Myriophyllum brasiliense. Aquat. Bot. 13: 147–164

    Google Scholar 

  • Salvucci, M. E., Bowes, G. (1983). Two mechanisms mediating the low photorespiratory state in submersed aquatic angiosperms. Pl. Physiol. 73: 488–496

    Google Scholar 

  • Sand-Jensen, K. (1983). Photosynthetic carbon sources of stream macrophytes. J. exp. Bot. 34: 198–210

    Google Scholar 

  • Sand-Jensen, K., Gordon, D. M. (1984). Differential ability of marine and freshwater macrophytes to utilize HCO -3 and CO2. Mar. Biol. 80: 247–253

    Google Scholar 

  • Short, F. T. (1985). A method for the culture of tropical seagrasses. Aquat. Bot. 22: 187–193

    Google Scholar 

  • Smith, F. A., Walker, N. A. (1980). Photosynthesis by aquatic plants: effects of unstirred layers in relation to assimilation of CO2 and HCO -3 and to carbon isotopic discrimination. New Phytol. 74: 245–259

    Google Scholar 

  • Sorrell, B. K., Dromgoole, F. I. (1986). Errors in measurements of aquatic macrophyte gas exchange due to storage in internal airspaces. Aquat. Bot. 24: 104–114

    Google Scholar 

  • Spence, D. H. N., Maberly, S. C. (1985). Occurrence and ecological importance of HCO -3 use among higher plants. In: Lucas, W. J., Berry, J. A. (eds.) Inorganic carbon uptake by aquatic photosynthetic organisms. American Society of Plant Physiologists, Rockville, Maryland, p. 125–145

    Google Scholar 

  • Steeman-Nielsen, E. (1947). Photosynthesis of aquatic plants with special reference to the carbon sources. Dansk. Bot. Ark. 8: 3–71

    Google Scholar 

  • Steeman-Nielsen, E. (1960). Uptake of CO2 by plants. In: Ruhland, W. (ed.) Encyclopedia of plant physiology. Springer-Verlag, Berlin, p. 70–84

    Google Scholar 

  • Steeman-Nielsen, E. (1975). Marine photosynthesis with special emphasis on the ecological aspects. Elsevier, Amsterdam

    Google Scholar 

  • Strain, B. R., Bazzazz, F. A. (1983). Terrestrial plant communities. In: Lemmon, E. R. (ed.) CO2 and plants. The response of plants to rising levels of atmospheric carbon dioxide. Westview Press, Boulder, Colorado, p. 177–222

    Google Scholar 

  • Stumm, W., Morgan, J. J. (1981). Aquatic chemistry. An introduction emphasizing chemical equilibria in natural waters. 2nd ed. Wiley, New York

    Google Scholar 

  • Titus, J. E., Stone, W. H. (1982). Photosynthetic response of two submersed macrophytes to dissolved inorganic carbon concentration and pH. Limnol. Oceanogr. 27: 151–160

    Google Scholar 

  • Van, T. K., Haller, W. T., Bowes, G. (1976). Comparison of the photosynthetic characteristics of three submersed aquatic plants. Pl. Physiol. 58: 761–768

    Google Scholar 

  • Vogel, A. I. (1961). A textbook of quantitative inorganic analysis including elementary instrumental analysis. Longmans, Green & Co., London

    Google Scholar 

  • Wheeler, W. N. (1980). Effect of boundary layer transport on the fixation of carbon by the giant kelp Macrocystis pyrifera. Mar. Biol. 56: 103–110

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. M. Lawrence, Tampa

Rights and permissions

Reprints and permissions

About this article

Cite this article

Durako, M.J. Photosynthetic utilization of CO2(aq) and HCO -3 in Thalassia testudinum (Hydrocharitaceae). Marine Biology 115, 373–380 (1993). https://doi.org/10.1007/BF00349834

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00349834

Keywords

Navigation