Skip to main content
Log in

Long-term acclimation of the teleost Oreochromis mossambicus to various salinities: two different strategies in mastering hypertonic stress

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Laboratory-reared tilapia (Oreochromis mossambicus) were long-term acclimated to freshwater (FW), brackish water (BW, 10‰ salinity), seawater (SW, 35‰ salinity) and two hypersaline media (45 and 60‰ salinity). We examined the influence of these ambient salinities on the density (D cc) and diameter (d cc) of DASPMI-stained chloride cells and on the capacity for electrogenic Cl- secretion of the in vitro opercular epithelium. To provide a characterisation of Cl- secretion, transepithelial potential difference (PD te), conductance (G te) and short-circuit current (I sc) were measured after mounting the respective epithelium in an Ussing-chamber. The cellular electromotive forces (E c) and conductances (G c) as well as the leak conductances (G l) were obtained from G te: I sc plots. In the salinity range between FW and SW both D cc and d cc increased. All electrophysiological parameters recorded increased in parallel, indicating a strong enhancement of the capacity for Cl- secretion on the cellular and epithelial level. In the salinity range above SW a further increase of D cc was observed. However, despite a higher concentration gradient across the body surface of the tilapia during acclimation to hypersaline media, the short-circuit current (I sc) was not significantly different compared to SW preparations. This reflects proportional decreases of G c and increases of E c, respectively. Of particular interest, we found a strong decrease of the leak conductance (G l) in preparations from tilapia acclimated to hypersaline media compared to those from SW fish, indicating that the tight junctions become less permeable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abel, D. C., Koenig, C. C., David, W. P. (1987). Emersion in the mangrove forest fish Rivulus marmoratus: a unique response to hydrogen sulfide. Envir. Biol. Fish. 18: 67–72

    Google Scholar 

  • Benos, D. J., Sorscher, E. J. (1992). Transport proteins: ion channels. In: Seldin, D. W., Giebisch, G. (eds.) The kidney: physiology and pathophysiology. Raven Press, Ltd., New York, p. 587–623

    Google Scholar 

  • Bereiter-Hahn, J. (1976). Dimethylaminostyrylmethylpyridiniumiodine (DASPMI) as a fluorescent probe for mitochondria in situ. Biochim. biophys. Acta 423: 1–14

    Google Scholar 

  • Dange, A. D. (1985). Branchial Na+−K+-ATPase activity during osmotic adjustments in two freshwater euryhaline teleosts, tilapia (Sarotherodon mossambicus) and the orange chromid (Etroplus maculatus). Mar. Biol. 87: 101–107

    Google Scholar 

  • Degnan, K. J., Karnaky, K. J., Jr., Zadunaisky, J. A. (1977). Active chloride transport in the in vitro opercular skin of a teleost (Fundulus heteroclitus), a gill-like epithelium rich in chloride cells. J. Physiol., Lond. 271: 155–191

    Google Scholar 

  • Degnan, K. J., Zadunaisky, J. A. (1980a). Ionic contributions to the potential and current across the opercular epithelium. Am. J. Physiol. 238: R231-R239

    Google Scholar 

  • Degnan, K. J., Zadunaisky, J. A. (1980b). Passive sodium movements across the opercular epithelium: the paracellular shunt pathway and ionic conductance. J. Membrane Biol. 55: 175–185

    Google Scholar 

  • Epstein, F. H., Silva, P., Kormanik, G. (1980). Role of Na−K-AT-Pase in chloride cell function. Am. J. Physiol. 238: R246-R250

    Google Scholar 

  • Evans, D. H. (1984a). Gill Na+/H+ and Cl-/HCO3 - exchange mechanisms evolved before the vertebrates entered fresh water. J. exp. Biol. 13: 465–470

    Google Scholar 

  • Evans, D. H. (1984b). The roles of gill permeability and transport mechanisms in euryhalinity. In: Hoar, W. S., Randall, D. J. (eds.) Fish physiology, Vol. Xb. Academic Press, Inc., Orlando, Florida, p. 239–283

    Google Scholar 

  • Feldmeth, C. R., Waggoner, J. P. (1972). Field measurements of tolerance to extreme hypersalinity in the California killifish, Fundulus parvipinnis. Copeia 3: 593–594

    Google Scholar 

  • Foskett, J. K., Hubbard, G. M., Machen, T. E., Bern, H. A. (1982a). Effects of epinephrine, glucagon and vasoactive intestinal polypeptide on chloride secretion by teleost opercular membrane. J. Comp. Physiol. (Sect. B) 146: 27–34

    Google Scholar 

  • Foskett, J. K., Logsdon, C. D., Turner, T., Machen, T. E., Bern, H. A. (1981). Differentiation of the chloride extrusion mechanism during seawater adaptation of a teleost fish, the cichlid Sarotherodon mossambicus. J. exp. Biol. 93: 209–224

    Google Scholar 

  • Foskett, J. K., Machen, T. E., Bern, H. A. (1982b). Chloride secretion and conductance of teleost opercular membrane: effects of prolactin. Am. J. Physiol. 242: R380-R389

    Google Scholar 

  • Foskett, J. K., Scheffey, C. (1982). The chloride cell: definitive identification as the salt-secretory cell in teleosts. Science, Washington 215: 164–166

    Google Scholar 

  • Hwang, P. P. (1987). Tolerance and ultrastructural responses of branchial chloride cells to salinity changes in the euryhaline teleost Oreochromis mossambicus. Mar. Biol. 94: 643–649

    Google Scholar 

  • Hwang, P. P. (1988). Multicellular complexes of chloride cells in the gills of freshwater teleosts. J. Morph. 196: 15–22

    Google Scholar 

  • Isaacson, L. C. (1977). Resolution of parameters in the equivalent electrical circuit of the sodium transport mechanism across toad skin. J. Membrane Biol. 30: 301–317

    Google Scholar 

  • Karnaky, K. J., Jr. (1972). A system to study the teleost chloride cell with the Ussing chamber. Bull. Mt. Desert Isl. biol. Lab. 12: 60–61

    Google Scholar 

  • Karnaky, K. J., Jr. (1986). Structure and function of the chloride cell of Fundulus heteroclitus and other teleosts. Am. Zool. 26: 209–224

    Google Scholar 

  • Karnaky, K. J., Jr., Degnan, K. J., Garretson, L. T., Zadunaisky, J. A. (1984). Identification and quantification of mitochondriarich cells in transporting epithelia. Am. J. Physiol. 246: R770-R775

    Google Scholar 

  • Karnaky, K. J., Jr., Degnan, K. J., Zadunaisky, J. A. (1977). Chloride transport across isolated opercular epithelium of killifish: a membrane rich in chloride cells. Science, Washington 195: 203–205

    Google Scholar 

  • Karnaky, K. J., Jr., Ernst, S. A., Philpott, C. W. (1976). Teleost chloride cell: I. response of pupfish Cyprinodon variegatus gill Na, K-ATPase and chloride cell fine structure to various high salinity environments. J. Cell. Biol. 70: 144–156

    Google Scholar 

  • Karnaky, K. J., Jr., Kinter, W. B. (1977). Killifish opercular skin: a flat epithelium with a high density of chloride cells. J. exp. Zool. 199: 355–364

    Google Scholar 

  • Keys, A. (1931). Chloride and water secretion and absorption by the gills of the eel. Z. vergl. Physiol. 15: 364–388

    Google Scholar 

  • Keys, A., Willmer, E. N. (1932). “Chloride secreting cells” in the gills of fishes, with special reference to the common eel. J. Physiol., Lond 76: 368–378

    Google Scholar 

  • King, J. A. C., Abel, D. C., Di Bona, D. R. (1989). Effects of salinity on chloride cells in the euryhaline cyprinodontid fish Rivulus marmoratus. Cell Tissue Res. 257: 367–377

    Google Scholar 

  • Kirschner, L. B. (1991). Water and ions. In: Prosser, C. L. (ed.) Comparative animal physiology: environmental and metabolic animal physiology. Wiley-Liss, New York, p. 13–107

    Google Scholar 

  • Krasny, J. E., Jr. (1981). Ion transport properties of the opercular epithelium of Fundulus grandis. Ph.D. Dissertation, Univ. Miami, Miami, Florida

    Google Scholar 

  • Kültz, D., Bastrop, R., Jürss, K., Siebers, D. (1992). Mitochondriarich (MR) cells and the activities of the Na+/K+-ATPase and carbonic anhydrase in the gill and opercular epithelium of Oreochromis mossambicus adapted to various salinities. Comp. Biochem. Physiol. 102/2 B: 293–301

    Google Scholar 

  • Maetz, J. (1970). Mechanisms of salt and water transfer across membranes in teleosts in relation to the aquatic environment. Mem. Soc. Endocr. 18: 3–29

    Google Scholar 

  • Marshall, W. S. (1977). Transepithelial potential and short-circuit current across the isolated skin of Gillichthys mirabilis (Teleostei: Gobiidae), acclimated to 5% and 100% seawater. J. Comp. Physiol. (Sect. B) 114: 157–165

    Google Scholar 

  • Marshall, W. S. (1981). Sodium dependency of active chloride transport across isolated fish skin (Gillichthys mirabilis). J. Physiol., Lond. 319: 165–178

    Google Scholar 

  • Motais, R., Garcia-Romeu, F., Maetz, J. (1966). Exchange diffusion effect and euryhalinity in teleosts. J. gen. Physiol. 50: 391–422

    Google Scholar 

  • Parry, G. (1966). Osmotic adaptation in fishes. Biol. Rev. 41: 392–444

    Google Scholar 

  • Silva, P., Solomon, R., Spokes, K., Epstein, F. H. (1977). Ouabain inhibition of gill Na−K-ATPase: relationship to active chloride transport. J. exp. Zool. 199: 419–426

    Google Scholar 

  • Smith, H. W. (1930). The absorption and excretion of water and salts by marine teleosts. Am. J. Physiol. 93: 480–505

    Google Scholar 

  • Stickney, R. R. (1986). Tilapia tolerance of saline waters: a review. Prog. Fish Cult. 48: 161–167

    Google Scholar 

  • Trewavas, E. (1983). Tilapiine fishes of the genera Sarotherodon, Oreachromis and Danakilia. British Museum of Natural History, London

    Google Scholar 

  • Vökler, T., Jürss, K., Holtz, M. (1987). Na/K-ATPase activity in different tissues of the rainbow trout, Salmo gairdneri RICHARDSON. Zool. Jb. (Abt. allg. Zool. Physiol. Tiere) 91: 457–466

    Google Scholar 

  • Weber, E. (1986). Grundriss der biologischen Statistik. Gustav Fischer Verlag, Jena

    Google Scholar 

  • Weisberg, S. B. (1986). Competition and coexistence among four estuarine species of Fundulus. Am. Zool. 26: 249–257

    Google Scholar 

  • Williams, E. M., Eddy, F. B., Ward, M. R. (1988). Chloride transport and the electrophysiological properties of the isolated skin of the shanny (Blennius pholis L.). J. exp. Zool. 245: 102–105

    Google Scholar 

  • Yonath, J., Civan, M. M. (1971). Determination of the driving force of the Na+ pump in toad bladder by means of vasopressin. J. Membrane Biol. 5: 366–385

    Google Scholar 

  • Zadunaisky, J. A. (1984). The chloride cell: the active transport of chloride and the paracellular pathways. In: Hoar, W. S., Randall, D. J. (eds.) Fish physiology, Vol. Xb. Academic Press Inc., Orlando, Florida, p. 129–176

    Google Scholar 

  • Zeiske, W., Van Driessche, W. (1984). The sensitivity of apical Na+ permeability in frog skin to hypertonic stress. Pflügers Arch. ges. Physiol. 400: 130–139

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kültz, D., Onken, H. Long-term acclimation of the teleost Oreochromis mossambicus to various salinities: two different strategies in mastering hypertonic stress. Marine Biology 117, 527–533 (1993). https://doi.org/10.1007/BF00349328

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00349328

Keywords

Navigation