Alcolado PM (1990) General features of Cuban sponge communities. In: Rützler K (ed) New perspectives in sponge biology. Smithsonian Institution Press, Washington, DC, pp 351–357
Google Scholar
Barnes DJ, Chalker BE (1990) Calcification and photosynthesis in reef-building corals and algae. In: Dubinsky Z (ed) Ecosystems of the world. Vol. 25. Coral reefs. Elsevier, Amsterdam, pp 109–131
Google Scholar
Carriker MR, Chauncey HH (1974) Effect of carbonic anhydrase inhibition on shell penetration by the muricid gastropod Ursalpinx cinerea. Malacologia 12: 247–263
Google Scholar
Chalker BE, Barnes DJ, Dunlap WC, Jokiel PL (1988) Light and reef-building corals. Interdisciplinary Sci Rev 13: 222–237
Google Scholar
Chetail M, Fournie J (1969) Shell-boring mechanism of the gastropod, Purpura lapillus L.: a physiological demonstration of the role of carbonic anhydrase in the dissolution of CaCO3. Am Zool 9: 983–990
Google Scholar
Crumeyrolles-Duclaux G (1970) Sur la position systematique des zooxanthelles de Cliona viridis (Schm.), spongaire. Cr hebd Séanc Acad Sci, Paris 270: 1238–1239
Google Scholar
Gleason DF, Wellington GM (1993) Ultraviolet radiation and coral bleaching. Nature, Lond 365: 836–838
Google Scholar
Glynn PW (1973) Aspects of the ecology of coral reefs in the western Atlantic region. In: Jones OA, Endean R (eds) Biology and geology of coral reefs. Vol. 1. Biology. Academic Press, New York, pp 271–324
Google Scholar
Goreau TF, Hartman WD (1963) Boring sponges as controlling forces in the formation and maintenance of coral reefs. Publs Am Ass Advmt Sci 75: 25–54
Google Scholar
Hatch WI (1980) The implication of carbonic anhydrase in the physiological mechanism of penetration of carbonate substrata by the marine burrowing sponge Cliona celata (Demospongiac). Biol Bull mar biol Lab, Woods Hole 139: 135–147
Google Scholar
Heatfield BM (1970) Calcification in echinoderms: effects of temperature and diamox on incorporation of calcium-45 in vitro by regenerating spines of Strongylocentrotus purpuratus. Biol Bull mar biol Lab, Woods Hole 139: 151–163
Google Scholar
Hurlbert SH (1984) Psuedoreplication and the design of ecological field experiments. Ecol Monogr 54: 187–211
Google Scholar
Istin M, Girard JP (1970) Carbonic anhydrase and mobilization of calcium reserves in the mantle of lamellibranchs. Calcif Tissue Res 5: 247–260
Google Scholar
Marsh JA (1970) Primary productivity of reef building calcareous red algae. Ecology 51: 255–263
Google Scholar
Neumann AC (1966) Observations on coastal erosion in Bermuda and measurements of the boring rate of the sponge, Cliona lampa. Limnol Oceanogr 11: 92–108
Google Scholar
Pang RK (1973) The ecology of some Jamaican excavaring sponges. Bull mar Sci 23: 227–243
Google Scholar
Pomponi SA (1977) Excavation of calcium carbonate substrates by boring sponges: ultrastructure and cytochemistry. Ph.D. dissertation. University of Miami, Miami, Florida
Google Scholar
Pomponi SA (1980) Cytological mechanisms of calcium carbonate excavation by boring sponges. Int Rev Cytol 65: 301–319
Google Scholar
Rosell D, Uriz MJ (1991) Cliona virids (Schmidt, 1862) and Cliona nigricans (Schmidt, 1862) (Porifera: Hadromerida): evidence which shows they are the same species. Ophelia 33: 45–53
Google Scholar
Rosell D, Uriz MJ (1992) Do associated zooxanthellae and the nature of the substratum affect survival, attachment and growth of Cliona viridis (Porifera: Hadromerida)? An experimental approach. Mar Biol 114: 503–507
Google Scholar
Rüzler K (1975) The role of burrowing sponges in bioerosion. Oecologia 19: 203–216
Google Scholar
Rützler K (1990) Associations between Caribbean sponges and photosynthetic organisms. In: Rützler K (ed) New perspectives in sponge biology. Smithsonian Institution Press, Washington, DC, pp 455–466
Google Scholar
Sara M, Liaci L (1964) Symbiotic associations between zooxanthelae and two marine sponges of the genus Cliona. Nature, Lond 203: p. 321
Google Scholar
Schmahl, G (1990) Community structure and ecology of sponges associated with four southern Florida coral reefs. In: Rützler K (ed) New perspectives in sponge biology. Smithsonian Institution Press, Washington, DC, pp 376–383
Google Scholar
Smarsh A, Chauncey HH, Carriker MR, Person P (1969) Carbonic anhydrase in the accessory boring organ in the gastropod Urosalpinx. Am Zool 9: 967–982
Google Scholar
Sullivan KM, M Chiappone (1992) A comparison of belt quadrat and species presence/absence sampling of stony coral (Scleractinia and Milleporina) and sponges for evaluating species patterning on patch reefs of the central Bahamas. Bull mar Sci 50: 464–488
Google Scholar
Turquier Y (1968) Recherches sur la biologie des cirripèdes acrothoraciques. I. L'anhydrase carbonique et le méchanisme de perforation du substrat par Trypetesa nassarioides Turq. Archs Zool exp gén 109: 113–122
Google Scholar
Vacelet J (1981) Algalsponge symbioses in the coral reefs of New-Caledonia: morphological study. (Proc 4th int coral Reef Symp 2: 713–719) [Gomez EJ et al. (eds) Marine Sciences Center, University of the Philippines, Quezon City, Philippines]
Google Scholar
Vicente VP (1978) An ecological evaluation of the West Indian demosponge Anthosigmella varians (Hadromerida: Spirastrellidae). Bull mar Sci 28: 771–777
Google Scholar
Weis VM (1991) The induction of carbonic anhydrase in the symbiotic sea anemone Aiptasia puchella. Biol Bull mar biol Lab, Woods Hole 180: 496–504
Google Scholar
Weis VM, Smith GJ, Muscatine L (1989) A “CO2 supply” mechanism in zooxanthellate cnidarians: role of carbonic anhydrase. Mar Biol 100: 195–202
Google Scholar
Wellington, GM (1982) An experimental analysis of the effects of light and zooplankton on coral zonation. Oecologia 52: 311–320
Google Scholar
Wiedenmayer F (1977) Shallow water sponges of the western Bahamas. Birkhauser Verlag, Basel
Google Scholar
Wilkinson CR (1987) Significance of microbial symbionts in sponge evolution and ecology. Symbiosis 4: 135–146
Google Scholar
Wilkinson CR (1992) Symbiotic interactions between marine sponges and algae. In: Reisser W (ed) Algae and symbioses: plants, animals, fungi and viruses, interactions explored. Bio-press Ltd., Bristol, pp 112–151
Google Scholar
Yellowlees D, Dionisio-Sese ML, Masuda K, Maruyama T, Abe T, Baillie B, Tsuzuki M, Miyachi S (1993) Role of carbonic anhydrase in the supply of inorganic carbon to the giant clam-zooxanthellate symbiosis. Mar Biol 115: 605–611
Google Scholar
Zar JH (1984) Biostatistical analysis. 2nd edn. Prentice-Hall, Engle-wood Cliffs, New Jersey
Google Scholar