Advertisement

Marine Biology

, Volume 113, Issue 3, pp 385–390 | Cite as

Genetics and taxonomy of ribbed mussels (Geukensia spp.)

  • S. K. Sarver
  • M. C. Landrum
  • D. W. Foltz
Article

Abstract

Ribbed mussels (232 in all) representing the nominal species Geukensia demissa (Dillwyn, 1817) were collected at nine coastal North American locations (two Pacific, four Atlantic and three Gulf Coast locations) between January 1990 and September 1991, and examined for nine shell characters and for variation at 18 allozyme loci. Two genetically-differentiated groups were identified and called demissa-type and granosissima-type mussles, based on similarity of geographic range to previously recognized subspecies of G. demissa. There was very little genetic differentiation of populations over moderate to large (3000 km) distances along the Atlantic coast (for demissa-type mussels), along the Gulf Coast (for granosissima-type mussels), or between Pacific and Atlantic populations of demissa-type mussles. The two types of mussels were differentiated genetically (Nei's unbiased genetic distance =0.55±0.20) at a level characteristic of separate species in other molluscan taxa, and to a lesser extent were differentiated morphologically. We recommend that the two types of mussels be treated as separate species within the genus Geukensia: G. demissa (Dillwyn, 1817) and G. granosissima (Sowerby, 1914).

Keywords

Genetic Distance Genetic Differentiation Geographic Range Atlantic Coast Level Characteristic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Abbott, R. T. (1974). American seashells; the marine Mollusca of the Atlantic and Pacific coasts of North America. 2nd ed. Van Nostrand Reinhold Co., New YorkGoogle Scholar
  2. Andrews, J. (1977). Shells and shores of Texas. University of Texas Press, Austin, TexasGoogle Scholar
  3. Avise, J. C., Ball, R. M. (1990). Principles of genealogical concordance in species concepts and biological taxonomy. Oxf. Surv. evolut. Biol. 7: 45–67Google Scholar
  4. Balakirev, E. S., Zaykin, D. V. (1990). Allozyme variability of formaldehyde dehydrogenase — a new gene marker in marine invertebrates. Isozyme Bull. 23: p. 91Google Scholar
  5. Beaumont, A. R., Seed, R., Garcia-Martinez, P. (1989). Electrophoretic and morphometric criteria for the identification of the mussels Mytilus edulis and M. galloprovincialis. Proc. Eur. mar. Biol. Symp. 23: 251–258. [Ryland, J. S., Tyler, P. A. (eds.) Olsen & Olsen, Fredensborg, Denmark]Google Scholar
  6. Berger, E. M. (1983). Population genetics of marine gastropods and bivalves. In: Russell-Hunter, W. D. (ed.) The Mollusca. Vol. 6. Ecology. Academic Press, New York, p. 563–596Google Scholar
  7. Blackwell, J. F., Gainey, L. F., Greenberg, M. J. (1977). Shell ultrastructure in two subspecies of the ribbed mussel, Geukensia demissa (Dillwyn, 1817). Biol. Bull. mar. biol. Lab., Woods Hole 152: 1–11Google Scholar
  8. Briggs, J. C. (1974). Marine zoogeography. McGraw-Hill, New YorkGoogle Scholar
  9. Chaisson, R. E., Serunian, L. A., Schopf, T. J. M. (1976). Allozyme variation between two marshes and possible heterozygote superiority within a marsh in the bivale Modiolus demissus. [Abstr.] Biol. Bull. mar. biol. Lab., Woods Hole 151: p. 404Google Scholar
  10. Dillwyr, L. W. (1817). A descriptive catalogue of recent shells arranged according to the Linnean method; with particular attention to the synonymy. Vol. 1. J. & A. Arch, LondonGoogle Scholar
  11. Garthwaite, R. (1986). The genetics of California populations of Geukensia demissa (Dillwyn) (Mollusca): further evidence on the selective importance of leucine aminopeptidase variation in salinity acclimation. Biol. J. Linn. Soc. 28: 343–358Google Scholar
  12. Garthwaite, R. L. (1989). Leucine aminopeptidase variation and fitness parameters in the estuarine bivalve Geukensia demissa. Mar. Biol. 103: 183–192Google Scholar
  13. Hillis, D. M., Dixon, M. T., Jones, A. L. (1991). Minimal genetic variation in a morphologically diverse species (Florida tree snail, Liguus fasciatus). J. Hered. 82: 282–286Google Scholar
  14. Koehn, R. K. (1991). The genetics and taxonomy of species in the genus Mytilus. Aquaculture, Amsterdam 94: 125–145Google Scholar
  15. Koehn, R. K., Turano, F. J., Mitton, J. B. (1973). Population genetics of marine pelecypods. II. Genetic differences in microhabitats of Modiolus demissus. Evolution 27: 100–105Google Scholar
  16. Liu, L. L., Foltz, D. W., Stickle, W. B. (1991). Genetic population structure of the southern oyster drill Stramonita (= Thais) haemostoma. Mar. Biol. 111: 71–79Google Scholar
  17. Livingstone, D. R., Stickle, W. B., Kapper, M. A., Wang, S., Zurburg, W. (1990). Further studies on the phylogenetic distribution of pyruvate oxidoreductase activities. Comp. Biochem. Physiol. 97B: 661–666Google Scholar
  18. Marcus, L. F. (1990). Traditional morphometrics. Spec. Publ. Univ. Mich. Mus. Zool. 2: 77–122Google Scholar
  19. Munksgaard, C. (1990). Electrophoretic separation of morphologically similar species of the genus Rissoa (Gastropoda: Prosobranchia). Ophelia 31: 97–104Google Scholar
  20. Murphy, R. W., Sites, J. W., Buth, D. G., Haufler, C. H. (1990). Proteins I: Isozyme electrophoresis. In: Hillis, D. M., Moritz, C. (eds.) Molecular systematics. Sinauer, Sunderland, Massachusetts, p. 45–126Google Scholar
  21. Nei, M. (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, Austin, Tex. 89: 583–590Google Scholar
  22. Ó Foighil, D., Eernisse, D. J. (1988). Geographically widespread, non-hybridizing sympatric strains of the hermaphroditic, brooding clam Lasaea in the northeastern Pacific Ocean. Biol. Bull. mar. biol. Lab., Woods Hole 175: 218–229Google Scholar
  23. Palmer, A. R., Gayron, S. D., Woodruff, D. S. (1990). Reproductive, morphological, and genetic evidence for two cryptic species of northeastern Pacific Nucella. Veliger 33: 325–338Google Scholar
  24. Poel, L. V. (1959). Faune malacologique du Hervien. Troisième note. Bull. Inst. r. Sci. nat. Belg. 35(15): 1–26Google Scholar
  25. Richardson, B. J., Baverstock, P. R., Adams, M. (1986). Allozyme electrophoresis: a handbook for animal systematics and population studies. Academic Press, Orlando, FloridaGoogle Scholar
  26. SAS Institute Inc. (1985). SAS user's guide: statistics. Version 5 ed. SAS Institute Inc. Cary, North CarolinaGoogle Scholar
  27. Schopf, T. J. M., Ohman M. D., Bleiweiss, R. (1975). Significant age-dependent and locality-dependent changes occur in gene frequencies in the ribbed mussel Modiolus demissus from a single salt marsh. [Abstr.]. Biol. Bull. mar. biol. Lab., Woods Hole 149: p. 446Google Scholar
  28. Shaklee, J. B., Allendorf, F. W., Morizot, D. C., Whitt, G. S. (1990). Gene nomenclature for protein-coding loci in fish. Trans. Am. Fish. Soc. 119: 2–15Google Scholar
  29. Sowerby, G. B. (1914). Descriptions of new species of Mollusca from New Caledonia, Japan, and other localities. Proc. malac. Soc. Lond. 11: 5–10Google Scholar
  30. Väinölä, R., Hvilsom, M. M. (1991). Genetic divergence and a hybrid zone between Baltic and North Sea Mytilus populations (Mytilidae: Mollusca). Biol. J. Linn. Soc. 43: 127–148Google Scholar
  31. Väinölä, R., Varvio, S.-L. (1989). Biosystematics of Macoma balthica in northwestern Europe. Proc. Eur. mar. Biol. Symp. 23: 309–316. [Ryland, J. S., Tyler, P. A. (eds.) Olsen & Olsen, Fredensborg, Denmark]Google Scholar
  32. Weir, B. S., Cockerham, C. C. (1984). Estimating F-statistics for the analysis of population structure. Evolution 38: 1358–1370Google Scholar
  33. Wiley, E. O. (1981). Phylogenetics: the theory and practice of phylogenetic systematics. John Wiley & Sons, New YorkGoogle Scholar
  34. Woodruff, D. S., Staub, K. C., Upatham, E. S., Viyanant, V., Yuan, H.-C. (1988). Genetic variation in Oncomelania hupensis: Schistosoma japonicum transmitting snails in China and the Philippines are distinct species. Malacologia 29: 347–361Google Scholar
  35. Wright, S. (1978). Evolution and the genetics of populations. Vol 4. Variability within and among natural populations. University of Chicago Press, ChicagoGoogle Scholar
  36. Young, J. P. W., Koehn, R. K., Arheim, N. (1979). Biochemical characterization of “LAP,” a polymorphic aminopeptidase from the blue mussel, Mytilus edulis. Biochem. Genet. 17: 305–323Google Scholar
  37. Zouros, E., Foltz, D. W. (1984). Possible explantations of heterozygote deficiency in bivalve molluses. Malacologia 25: 583–591Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • S. K. Sarver
    • 1
  • M. C. Landrum
    • 1
  • D. W. Foltz
    • 1
  1. 1.Department of Zoology and PhysiologyLouisiana State UniversityBaton RougeUSA

Personalised recommendations