Advertisement

Archive for History of Exact Sciences

, Volume 30, Issue 1, pp 7–44 | Cite as

Le soluzioni di Girolamo Saccheri e Giovanni Ceva al ‘Geometram quaero’ di Ruggero Ventimiglia: Geometria proiettiva italiana nel tardo seicento

  • Aldo Brigaglia
  • Pietro Nastasi
Article

Abstract

Girolamo Saccheri's first printed work, his Quaesita Geometrica of 1693, has always been considered a minor one. It is not our intention wholly to reverse this judgement, but it is our considered opinion that it is something a deal more than a mere student's exercise. Above all, the solutions of its first two problems gave Saccheri, helped by his friend and colleague Giovanni Ceva, the opportunity to rediscover, by a systematic employment of the properties of harmonic and anharmonic ratio, many important theorems of Desargues, La Hire, and others. We accordingly stress that this work is an extension of Ceva's most famous book, his De lineis rectis, written fifteen years earlier.

The recent edition, moreover, of Newton's manuscript work on “Geometria”, and Whiteside's careful notes upon it have given us a new slant on the “refound” interest in classical geometry during the latter seventeenth century. We have compared Saccheri's book with standard contemporary equivalent works, in Italy itsef (especially ones by Borelli and Viviani) and elsewhere in Europe (notably ones by La Hire and Newton). We have now verified to our satisfaction not only that the development of Ceva's and Saccheri's mathematical thinking derived in an organic way from the study of the pole-polar properties of conics in the Italian tradition, but that they were also greatly influenced (in their search for unifying theoretical principles) by the ideas of René Descartes even while refusing to follow his preference for algebraic technicalities.

We give, finally, a brief sketch of Ruggero Ventimiglia, a man now all but forgotten, but who is shown by his Enodationes duodecim problematum of 1690 to have been following a program of projective study of “Analysis Geometrica”, one which his premature death (at the age of 28) made impossible to pursue to completion.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliografia

  1. 1.
    Anania, Anna Angela, I dodici problemi dell'olandese, tesi di laurea (relatore Prof. E. Giusti) per il Corso di Laurea in Matematica della Università di Firenze, 1980–81.Google Scholar
  2. 2.
    Argelati, Filippo, Bibliotheca Scriptorum Mediolanensium, Milano, 1745.Google Scholar
  3. 3.
    Billy, Jacques de, Tractatus de proportione harmonica, Paris, 1658.Google Scholar
  4. 4.
    Borelli, Giovanni Alfonso, Elementa Conica Apollonii Pergaei et Archimedis Opera nova et breviori methodo demonstrata, Roma, 1679.Google Scholar
  5. 5.
    Bosmans, Henry, ‘Le géomètre Jérome Saccheri S. J. (1667–1733)’, Revue des Questions Scientifiques, 4, 1925, pp. 401–430.Google Scholar
  6. 6.
    Ceva, Giovanni, De Lineis Rectis se invicem secantibus Statica Constructio, Milano, 1678.Google Scholar
  7. 7.
    Chasles, Michel, Aperçu historique sur l'Origine et le Développement des Méthodes en Géomètrie, seconda edizione, Paris: Gauthier-Villars, 1875.Google Scholar
  8. 8.
    Commandino, Federico, Pappi Alexandrini Mathematicae Collectiones, Pesaro, 1588 = Venezia, 1589; seconda edizione (a cura di Carlo Manolessi) Bologna, 1660.Google Scholar
  9. 9.
    Cremona, Luigi, ‘Intorno ad un'operetta di Giovanni Ceva’, Opere Matematiche, Milano: Hoepli, 1914, pp. 208–223.Google Scholar
  10. 10.
    Cremona, Luigi, Elementi di geometria proiettiva, Roma: Paravia, 1873.Google Scholar
  11. 11.
    Fermat, Pierre De, Oeuvres (éditées par P. Tannery et C. Henry), 5 voll., Paris: Gauthier-Villars, 1891–1922.Google Scholar
  12. 12.
    Freguglia, Paolo, Fondamenti storici della geometria, Milano: Feltrinelli, 1982.Google Scholar
  13. 13.
    Galilei, Galileo, Discorsi e Dimostrazioni Matematiche intorno à Due Nuove Scienze, Leyden 1638.Google Scholar
  14. 14.
    Grandi, Guido, Geometrica demonstratio Vivianorum Problematum, Firenze, 1699.Google Scholar
  15. 15.
    La Hire, Philippe de, Sectiones Conicae in Novem Libros distributae, Paris, 1685.Google Scholar
  16. 16.
    Leibniz, Gottfried Wilhelm von, Mathematische Schriften, t. VII (a cura di C. I. Gerhardt), Halle, 1863.Google Scholar
  17. 17.
    L'Hospital, le Marquis Guillaume de, Traité Analytique des Sections Coniques, Paris, 1720.Google Scholar
  18. 18.
    Loria, Gino, Spezielle Algebraische und Transzendente Ebene Kurven, Leipzig/Berlin: Teubner, 1910–1911; edizione italiana, Curve piane speciali, Milano: Hoepli, 1930.Google Scholar
  19. 19.
    Loria, Gino, Storia delle Matematiche, Torino: STEN, 1931; seconda edizione riveduta e aggiornata, Milano: Hoepli, 1950.Google Scholar
  20. 20.
    Masotti, Arnaldo, ‘Matematica e Matematici’, Storia di Milano, 16, Milano, 1962, pp. 713–814.Google Scholar
  21. 21.
    Maurolico, Francesco, Emendatio et Restitutio Conicorum Apollonii Pergaei, Messina, 1654.Google Scholar
  22. 22.
    Maurolico, Francesco, Admirandis Syracusani monumenta, Palermo, 1685.Google Scholar
  23. 23.
    Micheli, Gianni (ed.), Storia d'Italia. Annali 3: Scienza e tecnica nella cultura e nella società dal Rinascimento a oggi, Torino: Einaudi, 1980.Google Scholar
  24. 24.
    Newton, Isaac, The Mathematical Papers, 8 vols., edited by D. T. Whiteside, Cambridge, 1967–1981.Google Scholar
  25. 25.
    Nicolas, Pierre, De Novis Spiralibus Exercitationes Duae, Toulouse, 1693.Google Scholar
  26. 26.
    Omerique, Antonio Hugo de, Analysis geometrica, Cadiz, 1698.Google Scholar
  27. 27.
    Poncelet, Jean Victor, Traité des propriétés projectives des figures, Paris, 1 1822.Google Scholar
  28. 28.
    Riccardi, Pietro, Biblioteca Matematica Italiana, 2 voll., Modena, 1870–1893; ristampa anastatica Milano: Görlich, 1952.Google Scholar
  29. 29.
    Saccheri, Girolamo, Quaesita geometrica a comite Rugerio de Vigintimilliis omnibus proposita, Milano, 1693.Google Scholar
  30. 30.
    SPHINX GEOMETRA, seu Quaesita Geometrica Proposita, et Soluta, Parma, 1694.Google Scholar
  31. 31.
    Trudi, Nicola, Teoremi sulle sezioni coniche, Napoli, 1840.Google Scholar
  32. 32.
    Ventimiglia, Ruggero, Enodationes duodecim problematum a Geometra post tabulam latente propositorum, Genova, 1690. È contenuta anche in 30. L'opuscolo, sconosciuto a tutti i bibliografi siciliani, porta solo le iniziali R. V. e consta di 20 pp. con belle figure intercalate; esso si conclude col problema UNUM ad Omnes che Saccheri risolse (assieme agli altri di [33]) in [29].Google Scholar
  33. 33.
    Ventimiglia, Ruggero, Geometram Quaero, Palermo, 1692. È anch'essa contenuta in [30]. Quest'opera, sostanzialmente il testo dei problemi di [29], è spesso riportata in modo erroneo: per esempio Antonio Mongitore (nella sua Bibliotheca Sicula, Palermo, 1714; ristampa anastatica Bologna: Forni, 1971) la riporta come Dubia geometrica.Google Scholar
  34. 34.
    Ver Eecke, Paul, Les coniques d'Apollonius de Perge, Paris: Blanchard, 1963.Google Scholar
  35. 35.
    Viviani, Vincenzo, De Locis Solidis Secunda Divinatio Geometrica in quinque Libros amissos Aristaei, Firenze, 1701.Google Scholar

Copyright information

© Springer-Verlag GmbH & Co 1984

Authors and Affiliations

  • Aldo Brigaglia
    • 1
    • 2
  • Pietro Nastasi
    • 1
    • 2
  1. 1.Istituto di MatematicaPalermo
  2. 2.Istituto di GeodesiaPalermo

Personalised recommendations