Archive for History of Exact Sciences

, Volume 34, Issue 3, pp 265–277 | Cite as

Gauss and the history of the fast Fourier transform

  • Michael T. Heideman
  • Don H. Johnson
  • C. Sidney Burrus


Fourier Fourier Transform Fast Fourier Transform 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. W. Cooley & J. W. Tukey, “An Algorithm for the Machine Calculation of Complex Fourier Series,” Math. Comput., Vol. 19, no. 2, pp. 297–301, Reprinted in Digital Signal Processing, ed. L. R. Rabiner & C. M. Rader, pp. 223–227, New York: IEEE Press, 1972, Apr. 1965.Google Scholar
  2. 2.
    E. O. Brigham, The Fast Fourier Transform. Englewood, NJ: Prentice-Hall, Inc., 1974.Google Scholar
  3. 3.
    I. J. Good, “The Interaction Algorithm and Practical Fourier Analysis,” J. R. Statist. Soc. B, Vol. 20, no. 2, pp. 361–372, 1958, Addendum in J. R. Statist. Soc. B, vol. 22, no. 2, pp. 372–375, 1960.Google Scholar
  4. 4.
    P. Rudnick, “Note on the Calculation of Fourier Series,” Math. Comput., Vol. 20, no. 3, pp. 429–430, Jul. 1966.Google Scholar
  5. 5.
    G. C. Danielson & C. Lanczos, “Some Improvements in Practical Fourier Analysis and Their Application to X-ray Scattering From Liquids,” J. Franklin Inst., Vol. 233, no. 4 and 5, pp. 365–380 and 435–452, Apr. and May 1942.Google Scholar
  6. 6.
    J. W. Cooley, P. A. W. Lewis & P. D. Welch, “Historical Notes on the Fast Fourier Transform,” IEEE Trans. Audio Electroacoust., Vol. AU-15, no. 2, pp. 76–79, Jun. 1967, Reprinted in Proc. IEEE, vol. 55, no. 10, pp. 1675–1677, Oct. 1967. Also reprinted in Digital Signal Processing, ed. L. R. Rabiner & C. M. Rader, pp. 260–262, New York: IEEE Press 1972.Google Scholar
  7. 7.
    C. Runge, “Über die Zerlegung empirisch gegebener Periodischer Funktionen in Sinuswellen,” Z. Math. Phys., Vol. 48, pp. 443–456, 1903.Google Scholar
  8. 8.
    C. Runge, “Über die Zerlegung einer empirischen Funktion in Sinuswellen,” Z. Math. Phys., Vol. 52, pp. 117–123, 1905.Google Scholar
  9. 9.
    H. H. Goldstine, A History of Numerical Analysis from the 16th Through the 19th Century. Berlin, Heidelberg, and New York: Springer-Verlag, 1977.Google Scholar
  10. 10.
    C. F. Gauss, “Nachlass, Theoria Interpolationis Methodo Nova Tractata,” in Carl Friedrich Gauss Werke, Band 3, Königlichen Gesellschaft der Wissenschaften: Göttingen, pp. 265–330, 1866.Google Scholar
  11. 11.
    H. Burkhardt, “Trigonometrische Interpolation,” in Chapter 9, Encyklopädie der Mathematischen Wissenschaften, vol. 2, part 1, 1st half, 1899–1916.Google Scholar
  12. 12.
    M. T. Heideman & C. S. Burrus, “A Bibliography of Fast Transform and Convolution Algorithms II,” Technical Report Number 8402, Electrical Engineering Dept., Rice University, Houston, TX 77251–1892, Feb. 1984.Google Scholar
  13. 13.
    L. H. Thomas, “Using a computer to Solve Problem in Physics,” in Applications of Digital Computers, Boston: Ginn, 1963.Google Scholar
  14. 14.
    S. Winograd, “On Computing the Discrete Fourier Transform,” Proc. Nat. Acad. Sci. USA, Vol. 73, no. 4, pp. 1005–1006, Apr. 1976.Google Scholar
  15. 15.
    C. Runge & H. König, “Vorlesungen über Numerisches Rechnen,” Die Grundlehren der Mathematischen Wissenschaften, Vol. 11, pp. 211–237, Berlin: Julius Springer, 1924.Google Scholar
  16. 16.
    K. Stumpff, Tafeln und Aufgaben zur Harmonischen Analyse und Periodogramm-rechnung. Berlin: Julius Springer, 1939.Google Scholar
  17. 17.
    E. T. Whittaker & G. Robinson, The Calculus of Observations. London: Blackie and Sons, Limited, 1924.Google Scholar
  18. 18.
    S. P. Thompson, “A New Method of Approximate Harmonic Analysis by Selected Ordinates,” Proc. Phys. Soc. London, Vol. 23, pp. 334–343, 1911.Google Scholar
  19. 19.
    S. P. Thompson, “Note on a Rapid Method of Harmonic Analysis,” Proc. Phys. Soc. London, Vol. 19, pp. 443–453, 1904.Google Scholar
  20. 20.
    G. H. Darwin & J. C. Adams, “The Harmonic Analysis of Tidal Observations,” Brit. Assoc. Report, pp. 49–118, 1883, Reprinted in G. H. Darwin: Scientific Papers Volume I: Oceanic Tides and Lunar Disturbances of Gravity, pp. 1–69, Cambridge: University Press, 1907.Google Scholar
  21. 21.
    A. Smith, Admiralty Scientific Mannal on ‘Deviations of the Compass’, 5th Edition. London: Hydrographic Office, Admiralty, 1874.Google Scholar
  22. 22.
    R. Strachey, “On the Computation of the Harmonic Components of a Series Representing a Phenomenon Recurring in Daily and Yearly Periods,” Proc. Roy. Soc. London, Vol. 42, no. 251, pp. 61–79, 1887.Google Scholar
  23. 23.
    J. D. Everett, “On a Method of Reducing Observations of Underground Temperature, With its Application to the Monthly Mean Temperatures of Underground Thermometers at the Royal Edinburgh Observatory,” Trans. Roy. Soc. Edin., Vol. 22, no. 2, pp. 429–439, 1860.Google Scholar
  24. 24.
    W. Thomson, “On the Reduction of Observations of Underground Temperature; With Application to Professor Forbes' Edinburgh Observations, and the Continued Carlton Hill Series,” Trans. Roy. Soc. Edin., Vol. 22, no. 2, pp. 405–427, Reprinted in Mathematical and Physical Papers, Vol. 3 of William Thomson, Lord Kelvin, pp. 261–290, London: C. J. Clay and Sons, Cambridge Univ. Press, 1890, 1860.Google Scholar
  25. 25.
    A. Smith & E. Sabine, “Contributions to Terrestrial Magnetism No. VIII, Memorandum on Elements of Reduction,” Phil. Trans. Roy. Soc. London, Vol. 136, no. 3, pp. 347–355, 1846.Google Scholar
  26. 26.
    A. Smith, Instructions for the Computation of a Table of the Deviations of a Ship's Compass, From Deviations Observed on 4, 8, 16, and 32 Points, and for the Adjustment of the Table on a Change of Magnetic Latitude. London: Gt. Brit. Hydrographic Office, 1850.Google Scholar
  27. 27.
    A. Smith, Supplement to the Practical Rules for Ascertaining the Deviations of the Ship's Compass Caused by the Ship's Iron, Being Instructions for the Computation of a Table of the Deviation of the Ship's Compass from Observations Made on 4, 8, 16, or 32 Points (Second Edition) and a Graphic Method of Correcting the Deviations of a Ship's Compass. London: J. D. Potter, 1855.Google Scholar
  28. 28.
    F. Carlini, Sulla Legge Delle Variazioni Orarie del Barometro. Modena: Presso la Tipographia Camerale, 1828. Also in Società Italiana della Scienze, Rome, Memorie di Matematica e di Fisica, vol. 20, p. 198, 1828.Google Scholar
  29. 29.
    P. A. Hansen, Mémoire Sur la Détermination des Perturbations Absolues dans des Ellipses d'une Excentricité et d'une Inclinaison Quelconques. Paris: Bachelier, 1835.Google Scholar
  30. 30.
    J. D. Markel, “FFT Pruning,” IEEE Trans. Audio Electroacoust., Vol. AU-19, no. 4, pp. 305–311, Dec. 1971.Google Scholar
  31. 31.
    L. Euler, Introductio in Analysin Infinitorum. Lausanne: Marc-Michel Bousquet et Comp., 1748. Reprinted in Leonhardi Euleri Opera Omnia, Series I, Volume 8.Google Scholar
  32. 32.
    L. Euler, “Observationes Generales Circa Series Quarum Termini Secundum Sinus vel Cosinus Angulorum Multiplorum Progrediuntur,” Nova Acta Academiae Scientiarum Petropolitanae, Vol. 7, pp. 87–98, 1793, Reprinted in Leonhardi Euleri Opera Omnia, Series I, Volume 16, pp. 163–177.Google Scholar
  33. 33.
    L. Euler, “Methodus Facilis Inveniendi Series per Sinus Cosinusve Angulorum Multiplorum Procedentes Quarum Usus in Universa Theoria Astronomiae est Amplissimus,” Nova Acta Academiae Scientiarum Petropolitanae, Vol. 11, pp. 94–113, 1798, Reprinted in Leonhardi Euleri Opera Omnia, Series I, Volume 16, pp. 311–332.Google Scholar
  34. 34.
    L. Euler, “De Propagatione Pulsuum per Medium Elasticum,” Novi Commentarii academiae scientiarum Petropolitanae, Vol. 1, pp. 67–105, 1750, Reprinted in Leonhardi Euleri Opera Omnia, Series II, Volume 10, pp. 98–131.Google Scholar
  35. 35.
    L. Euler, “De Serierum Determinatione seu Nova Methodus Inveniendi Terminos Generales Serierum,” Novi Commentarii academiae scientiarium Petropolitanae, Vol. 3, pp. 36–85, 1753, Reprinted in Leonhardi Euleri Opera Omnia, Series I, Volume 14 pp. 463–515.Google Scholar
  36. 36.
    C. Truesdell, “The Rational Mechanics of Flexible or Elastic Bodies,” in Leonhardi Euleri Opera Omnia, pp. 229–234, Series II, Volume 11, Section 2, 1960.Google Scholar
  37. 37.
    A.-C. Clairaut, “Mémoire sur l'Orbite Apparente du Soleil Autour de la Terre, en Ayant égard aux Perturbations Produites par les Actions de la Lune et des Planètes Principales,” Mémoires de Mathématique et de Physique de l'Académie Royale des Sciences, no. 9, pp. 801–870, 1754.Google Scholar
  38. 38.
    D. Bernoulli, “Réflexions et éclaircissemens sur les Nouvelles Vibrations des Cordes,” Mémoires de l'Académie Royale des Sciences et Belles Lettres, Berlin, 1753.Google Scholar
  39. 39.
    J. L. Lagrange, “Recherches sur la Nature et la Propagation du Son,” Miscellanea Taurinensia (Mélanges de Turin), Vol. I, no. I-X, pp. 1–112, 1759, Reprinted in Œuvres de Lagrange, Volume 1, ed. J. A. Serret, pp. 39–148, Paris: Gauthier-Villars, 1867.Google Scholar
  40. 40.
    J. L. Lagrange, “Solution de Différents Problèmes de Calcul Intégral,” Miscellanea Taurinensia (Mélanges de Turin), Vol. III, Reprinted in Œuvres de Lagrange, Volume 1, ed. J. A. Serret, pp. 469–668, Paris: Gauthier-Villars, 1867, 1762–1765.Google Scholar
  41. 41.
    H. Burkhardt, “Trigonometrische Reihen und Integrale (bis etwa 1850),” in Chapter 12, Encyklopädie der Mathematischen Wissenschaften, vol. 2, part 1, 2nd half, 1904–1916.Google Scholar
  42. 42.
    G. W. Dunnington, Carl Friedrich Gauss: Titan of Science. New York: Exposition Press, 1955.Google Scholar
  43. 43.
    R. N. Bracewell, The Fourier Transform and Its Applications. New York: McGraw-Hill, 1978.Google Scholar
  44. 44.
    C. S. Burrus, “Index Mappings for Multidimensional Formulation of the DFT and Convolution,” IEEE Trans. on ASSP, Vol. ASSP-25, no. 3, pp. 239–242, Jun. 1977.Google Scholar
  45. 45.
    U. C. Merzbach, Carl Friedrich Gauss: A Bibliography. Wilmington, DE: Scholarly Resources Inc., 1984.Google Scholar
  46. 46.
    J. B. J. Fourier, Théorie Analytique de la Chaleur. Paris: F. Didot, 1822. English translation in The Analytical Theory of Heat, translated by Alexander Freeman, Cambridge: University Press, 1878.Google Scholar
  47. 47.
    J. Herivel, Joseph Fourier: The Man and the Physicist. Oxford: Clarendon Press, 1975.Google Scholar
  48. 48.
    L. L. Hope, “A Fast Gaussian Method for Fourier Transform Evaluation,” Proc. IEEE, Vol. 63, no. 9, pp. 1353–1354, Sep. 1975.Google Scholar
  49. 49.
    I. J. Good, “Inversion of the Discrete Gauss Transform,” Applic. Anal., Vol. 9, no. 3 pp. 205–218, Oct. 1979.Google Scholar
  50. 50.
    T. S. Huang, “How the Fast Fourier Transform Got Its Name,” Computer, Vol. 4, no. 3, p. 15, May–Jun. 1971.Google Scholar

Copyright information

© Springer-Verlag GmbH & Co. KG 1985

Authors and Affiliations

  • Michael T. Heideman
    • 1
  • Don H. Johnson
    • 1
  • C. Sidney Burrus
    • 1
  1. 1.Department of Electrical & Computer EngineeringRice UniversityHouston

Personalised recommendations