Skip to main content
Log in

Thermal conductivity and interface thermal resistance of Si film on Si substrate determined by photothermal displacement interferometry

  • Surfaces And Multilayers
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

An in situ, noncontact, photothermal displacement interferometer for performing thermal diffusivity measurements on bulk and thin-film materials has been developed. Localized transient surface motion is generated through photothermoelastic coupling of a pulsed, heating laser beam to the sample under investigation. The maximum surface displacement is found to be linearly dependent on the laser power while the proportionality is a function of the thermal diffusivity. Both thin-film conductivity and film/substrate interface thermal resistance are derived from the measured, effective thermal conductivity by employing simple heat-flow analysis. Wedge-shaped Si films, vacuum deposited on single crystal Si wafers are studied with this technique. A sample with oxide layer removed by ion bombardment of the wafer surface prior to film deposition shows the same film conductivity as a sample film deposited on an as-cast wafer, while the uncleaned sample exhibits higher interface thermal resistance. It is found that the thin-film thermal conductivity is somewhat smaller than the bulk value. However, the existence of an interface thermal resistance, when combined with film thermal conductivity, can result in an effective thermal conductivity as low as two orders of magnitude lower than the bulk value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Exemplary references are R. Berman: Thermal Conduction in Solids (Clarendon, Oxford 1976);

    Google Scholar 

  2. J.E. Parrott, A.D. Stuckes: Thermal Conductivity of Solids (Pion, London 1975);

    Google Scholar 

  3. P.G. Klemens: Theory of the Thermal Conductivity of Solids, In: Thermal Conductivity, ed. by R.P. Tye (Academic, London, New York 1969) Vol. 1, pp. 1–68;

    Google Scholar 

  4. E.F. Steigmeier: Thermal Conductivity of Semi-conducting Materials, In: Thermal Conductivity, ed. by R.P. Tye (Academic, London, New York 1969) Vol. 2, pp. 203–251

    Google Scholar 

  5. D.L. Decker, L.G. Koshigoe, E.J. Ashley: Thermal Properties of Optical Thin Film Materials. In: Laser Induced Damage in Optical Materials: 1984, Natl. Bur. Stand. (U.S.), Spec. Publ. 727 (U.S. Government Printing Office, Washington, DC 1986) p. 291

    Google Scholar 

  6. E.T. Swartz, R.O. Pohl: Thermal Resistance at Interfaces. Appl. Phys. Lett. 51, 2200 (1987)

    Google Scholar 

  7. V.M. Abrosimov, B.N. Egorov, N.S. Lidorenko, I.B. Rubashov: Investigation of Thermal Conductivity of Thin Metallic Films. Sov. Phys. Solid State 11, 427 (1969)

    Google Scholar 

  8. B.T. Boiko, A.T. Pugachev, V.M. Bratsychin: Method for the Determination of the Thermophysical Properties of Evaporated Thin Films. Thin Solid Films 17, 157 (1973)

    Google Scholar 

  9. N. Savvides, H.J. Goldsmid: Measurement of Thermal Conductivity by a Parallel Flow Sandwich Technique Using the Peltier Effect. Phys. E 5, 553 (1972)

    Google Scholar 

  10. R.W. Powell: Experiments Using a Simple Thermal Comparator for Measurement of Thermal Conductivity, Surface Roughness and Thickness of Foils or of Surface Deposits. J. Sci. Instrum. 34, 485 (1957)

    Google Scholar 

  11. J.C. Lambropoulos, M.R. Jolly, C.A. Amsden, S.E. Gilman, M.J. Sinicropi, D. Diakomihalis, S.D. Jacobs: Thermal Conductivity of Dielectric Thin Films. J. Appl. Phys. 66, 4230 (1989)

    Google Scholar 

  12. T.R. Ogden, A.D. Rathsam, T. Gilchrist: Thermal Conductivity of Thick Anodic Oxide Coatings on Aluminum. Mater. Lett. 5, 84 (1987)

    Google Scholar 

  13. J.P. Roger, F. Lepoutre, D. Fournier, A.C. Boccara: Thermal Diffusivity Measurement of Micron-Thick Semiconductor Films by Mirage Detection. Thin Solid Films 155, 165 (1987)

    Google Scholar 

  14. A. Skumanich, H. Dersch, M. Fathallah, N.M. Amer: A Contactless Method for Investigating the Thermal Properties of Thin Films. Appl. Phys. A 43, 297 (1987)

    Google Scholar 

  15. N. Yacoubi, B. Girault, J. Fesquet: Determination of Absorption Coefficients and Thermal Conductivity of GaAlAs/GaAs Heterostructure Using a Photothermal Method. Appl. Opt. 25, 4622 (1986)

    Google Scholar 

  16. C.A. Paddock, G.L. Eesley: Transient Thermoreflectance from Thin Metal Films. Appl. Phys. 60, 285 (1986)

    Google Scholar 

  17. W.P. Leung, A.C. Tam: Thermal Diffusivity in Thin Films Measured by Noncontact Single-Ended Pulsed-Laser-Induced Thermal Radiometry: Opt. Lett. 9, 93 (1984)

    Google Scholar 

  18. I. Hatta, R. Kato, A. Maesono: Thermal Diffusivity Measurement of Thin Films by Means of an ac Calorimetric Method. Proc. 1st Asian Thermophy. Prop. Conf. (Beijing, China) p.310 (1986)

  19. D. Ristau, J. Ebert: Development of a Thermographic Laser Calorimeter. Appl. Opt. 25, 4571 (1986)

    Google Scholar 

  20. K.L. Saenger: An Interferometric Calorimeter for Thin-Film Thermal Diffusivity Measurements. Appl. Phys. 65, 1447 (1989)

    Google Scholar 

  21. G. Rousset, L. Bertrand, P. Cielo: A Pulsed Thermoelastic Analysis of Photothermal Surface Displacements in Layered Materials. J. Appl. Phys. 57, 4396 (1985)

    Google Scholar 

  22. I. Suemune, H. Yamamoto, M. Yamanishi: Noncontact Photoacoustic Measurements of Semiconductors with Michelson Interferometry. J. Appl. Phys. 58, 615 (1985)

    Google Scholar 

  23. A. Rosencwaig, J. Opsal, W. L. Smith, D.L. Willenborg: Detection of Thermal Waves Through Optical Reflectance. Appl. Phys. Lett. 46, 1013 (1985)

    Google Scholar 

  24. R.M. White: Generation of Elastic Waves by Transient Surface Heating. J. Appl. Phys. 34, 3559 (1963)

    Google Scholar 

  25. J.D. Jackson: Classical Electrodynamics, 2nd edn. (Wiley, New York 1975)

    Google Scholar 

  26. H.S. Carslaw, J.C. Jaeger: Conduction of Heat in Solids, 2nd edn. (Oxford University Press, London 1959)

    Google Scholar 

  27. M.A. Olmstead, N.M. Amer, S. Kohn, D. Fournier, A.C. Boccara: Photothermal Displacement Spectroscopy: An Optical Probe for Solids and Surfaces. Appl. Phys. A 32, 141 (1983)

    Google Scholar 

  28. J.R. Dryden: The Effect of a Surface Coating on the Constriction Resistance of a Spot on an Infinite Half-Plane. J. Heat Transfer Trans ASME 105, 408 (1983)

    Google Scholar 

  29. D.K. Cohen, B. Little, F.S. Luecke: Techniques for Measuring 1-μm Diam Gaussian Beams. Appl. Opt. 23, 637 (1984)

    Google Scholar 

  30. H.J. Goldsmid, M.M. Kaila, G.L. Paul: Thermal Conductivity of Amorphous Silicon. Phys. Stat. Sol. (a) 76, K31 (1983)

  31. C.K. Ong, E.H. Sin, H.S. Tan: Heat-Flow Calculation of Pulsed Excimer Ultraviolet Laser's Melting of Amorphous and Crystalline Silicon Surfaces: J. Opt. Soc. Am. B 3, 812 (1986)

    Google Scholar 

  32. H.C. Webber, A.G. Cullis, N.G. Chew: Computer Simulation of High Speed Melting of Amorphous Silicon. Appl. Phys. Lett. 43, 669 (1983)

    Google Scholar 

  33. D.H. Lowndes, R.F. Wood: Studies of Pulsed Laser Melting and Rapid Solidification Using Amorphous Silicon. J. Luminescence 30, 395 (1985)

    Google Scholar 

  34. H.A. Schafft, J.S. Suehle, P.G.A. Mirel: Thermal Conductivity Measurements of Thin-Film Silicon Dioxide. In: Proc. 1989 Int'l Conf. Microelectronic Test Structures (IEEE, New York 1989) Vol. 2, p. 121

    Google Scholar 

  35. Z.L. Wu, H. Groenbeck, Z.X. Fan: Thermal Transport Studies of Diamond Thin Films, to be published in 22nd Boulder Damage Symposium on Optical Materials for High Power Lasers

Download references

Author information

Authors and Affiliations

Authors

Additional information

Currently supported by the LLE fellowship

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuo, B.S.W., Li, J.C.M. & Schmid, A.W. Thermal conductivity and interface thermal resistance of Si film on Si substrate determined by photothermal displacement interferometry. Appl. Phys. A 55, 289–296 (1992). https://doi.org/10.1007/BF00348399

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00348399

PACS

Navigation