Skip to main content
Log in

Thermal wave electroacoustic calorimetry in a Si photovoltaic cell

  • Solids And Materials
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Power dissipation in a pn + Si solar cell has been monitored using the electroacoustic technique. Experimental results are described by a vector model which takes into account the different physical locations of the several heat-generating or heat-consuming processes. Analysis of experimental data based on this model allows separation of the different contributions to the power dissipated in the cell and a direct insight into the power loss mechanisms in the device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

D th :

thermal diffusion coefficient of the sample

EA:

electroacoustic

E gap :

energy of the gap of the semiconductor

hv :

energy of the incident light

i dark :

cell current density in the dark

i 0 :

saturation current density of the device

l :

sample thickness

n :

quality factor of the device

P :

total power dissipated in the cell in PA experiments

PA:

photoacoustic

P dark :

total power dissipated in the solar cell in the dark in EA experiments

P fs, inj, P bs, inj :

cooling of front and back surface of the cell by injected carriers

P fs, photo, P bs, photo :

heating of front and back surface of the cell by photogenerated carriers

P inj :

power dissipated in the recombination of injected carriers

P jc :

power absorbed in the junction cooling process

P light :

total power dissipated in the illuminated solar cell in EA experiments

P photo :

power dissipated by photogenerated carriers when drifting along the potential slope

P therm :

power dissipated by thermalization of photocarriers in the conduction band

V :

amplitude of the modulated potential applied to the cell

α, β:

phase angles between vector contributions to the total dissipated power in the cell

ΔE c, ΔE v :

energy difference between the quasi-Fermi levels of the n(p) semiconductor and the bottom (top) of the conduction (valence) band

μth=(2D th/ω)1/2 :

thermal diffusion length of the sample

Φd :

phase of EA signal in the dark

Φ1 :

phase of EA signal with light

ω:

frequency of the modulated voltage applied to the cell.

References

  1. A. Fujishima, G.H. Brilmyer, A.J. Bard: Proc. Electrochem. Soc. 77, 172 (1977)

    Google Scholar 

  2. D. Cahen, P.-E. Nordal, S.O. Kanstad: Appl. Phys. Lett. 49, 1351 (1986)

    Google Scholar 

  3. H. Koinuma, K. Hashimoto, K. Fueki: In Conf. Rec. 18th IEEE Photovolt. Spec. Conf. (1985) p. 1683

  4. Y. Mishima, M. Hirose, I. Suemune, M. Yamanishi, Y. Osaka: J. Phys. 42, (Suppl.), C4–447 (1981)

    Google Scholar 

  5. R.E. Wagner, A. Mandelis: Phys. Rev. B 38, 9920 (1988)

    Google Scholar 

  6. J. Rappich, J.K. Dohrmann: In Photoacoustic and Photothermal Phenomena, ed. by P. Hess, J. Pelzl, Springer Ser. Opt. Sci. Vol. 58 (Springer, Berlin, Heidelberg 1988) p. 204

    Google Scholar 

  7. J. Rappich, J.K. Dohrmann: Ber. Bunsenges. Phys. Chem. 92, 1342 (1988)

    Google Scholar 

  8. A. Rosencwaig, A. Gersho: J. Appl. Phys. 47, 64 (1976)

    Google Scholar 

  9. M. Wolf, D. Cahen: Solar Cells 27, 247 (1989)

    Google Scholar 

  10. I.F. Faria, C.C. Ghizoni, L.C.M. Miranda, H. Vargas: J. Appl. Phys. 59, 3294 (1986)

    Google Scholar 

  11. H.L. Riete, L.C.M. Miranda, H. Vargas: Appl. Phys. A 44, 219 (1987)

    Google Scholar 

  12. S.M.N. Mello, C.C. Ghizoni, L.C.M. Miranda, H. Vargas: J. Appl. Phys. 61, 5176 (1987)

    Google Scholar 

  13. M. Wolf: Energy Convers. 11, 63 (1971)

    Google Scholar 

  14. D. Cahen, H. Flaisher, M. Wolf: In Photoacoustic and Photothermal Phenomena, ed. by P. Hess, J. Pelzl, Springer Ser. Opt. Sci. Vol. 58 (Springer, Berlin, Heidelberg 1988) p. 247

    Google Scholar 

  15. W. Thielemann, B. Rheinländer: Solid State Electron. 28, 1111 (1985)

    Google Scholar 

  16. H. Flaisher, M. Wolf, D. Cahen: J. Appl. Phys. 66, 1832 (1989)

    Google Scholar 

  17. B. Büchner, M. Wolf, D. Cahen: Mater. Sci. Eng. A 122, 127 (1989)

    Google Scholar 

  18. D. Cahen, B. Büchner, F. Decker, M. Wolf: IEEE Trans. ED-37, 498 (1990)

    Google Scholar 

  19. H. Flaisher, D. Cahen, M. Wolf: IEEE Trans. ED-34, 457 (1987)

    Google Scholar 

  20. B. Büchner, H. Flaisher, M. Wolf, D. Cahen: Conf. Rec. 20th IEEE Photovolt. Spec. Conf. (1988) p. 1452

  21. B. Büchner, H. Flaisher, M. Wolf, D. Cahen: J. Appl. Phys. 67, 4338 (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fagotto, E.A.M., Costa, C.H.C.R., Decker, F. et al. Thermal wave electroacoustic calorimetry in a Si photovoltaic cell. Appl. Phys. A 54, 1–5 (1992). https://doi.org/10.1007/BF00348121

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00348121

PACS

Navigation