Skip to main content
Log in

Tracking heterochromatin

  • Chromosoma Focus
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

The Second International Workshop on Drosophila Heterochromatin, held in Honolulu from January 4–7, 1995, brought together about 70 scientists from the US, Canada, Germany, Italy, Russia, and the Netherlands. After the first of these international meetings, five years ago, Mary Lou Pardue and Wolfgang Hennig, in these columns, commented on its proceedings, and on heterochromatin in general. Although the questions that they raised cannot yet be answered exhaustively, important and sometimes surprising new observations have been made, some previously tentative answers have been firmed up, and some theoretical views underwent significant shifts. We wish to reflect here a few of the data presented at the second workshop, and express some thoughts suggested to us by these recent findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akhmanova A, Bindels P, Xu J, Miedema K, Kremer H, Hennig W (1995) Structure and expression of histone H3.3 genes in Drosophila melanogaster and Drosophila hydei. Genome 38: 586–600

    Google Scholar 

  • Belyaeva ES, Zhimulev IF (1991) Cytogenetic and molecular aspects of position effect variegation in Drosophila. Chromosoma 100:453–466

    Google Scholar 

  • Bernardi G (1995) The human genome: organization and evolutionary history. Ann Rev Genetics 29:445–476

    Google Scholar 

  • Biggs WHIII, Zavitz KH, Dickson B, van der Straten A, Brunner D et al. (1994) The Drosophila rolled locus encodes a MAP kinase required in the sevenless transduction pathway. EMBO J 13:1628–1635

    Google Scholar 

  • Derancourt J, Lebor AS, Zuckerkandl E (1967) Séquence des acides aminés, séquence des nucléotides et évolution. Bull Soc Chim Biol 49:577–607

    Google Scholar 

  • Devlin RH, Bingham B, Wakimoto BT (1990) The organization and expression of the light gene, a heterochromatic gene of Drosophila melanogaster. Genetics 125:129–140

    Google Scholar 

  • Dorer DR, Henikoff S (1994) Expansions of transgene repeats cause heterochromatin formation and gene silencing in Drosophila. Cell 77:993–1002

    Google Scholar 

  • Eberl DF, Duyf BJ, Hilliker AJ (1993) The role of heterochromatin in the expression of a heterochromatic gene, the rolled locus of Drosophila melanogaster. Genetics 134:277–292

    Google Scholar 

  • Eissenberg JC, Elgin SCR, Paro R (1995) Epigenetic regulation in Drosophila: a conspiracy of silence. In: Elgin SCR (ed) Chromatin structure and gene expression. IRL Press, New York, pp 147–171

    Google Scholar 

  • Hanscombe O, Whyatt D, Fraser P, Yannoutsos N, Greaves D, Dillon N, Grosveld F (1991) Importance of globin gene order for correct developmental expression. Genes Dev 5:1387–1394

    Google Scholar 

  • Hecht A, Laroche T, Strahl-Bolsinger S, Gasser SM, Grunstein M (1995) Histone H3 and H4 N-termini interact with SIR3 and SIR4 proteins: a molecular model for the formation of heterochromatin in yeast. Cell 80:583–592

    Google Scholar 

  • Hennig W (1981) Zur Evolution der Chromosomen und Zellen höherer Organismen. Nova Acta Leopoldina NF 56:13–24

    Google Scholar 

  • Hennig W (1993) Conventional protein coding genes in the Drosophila Y chromosome: is the puzzle of the fertility gene function solved? Proc Natl Acad Sci USA 90:10904–10906

    Google Scholar 

  • Hennig W, Leoncini O, Hennig I (1973) Heterochromatin, simple sequence DNA and differential staining patterns in Drosophila chromosomes. In: Pfeiffer RA (ed) Modern aspects of cytogenetics: constitutive heterochromatin in man. Symposia Medica Hoechst. Schattauer, Stuttgart, pp 87–99 (see Discussion, p 188)

    Google Scholar 

  • Hennig W, Meer B (1971) Reduced polyteny of ribosomal RNA cistrons in giant chromosomes of Drosophila hydei. Nature New Biol 233:70–72

    Google Scholar 

  • Hochstenbach R, Pötgens A, Meyer H, Dijkhof R, Knops M, Schouren K, Hennig W (1993) Partial reconstruction of the lampbrush loop pair Nooses on the Y chromosome of Drosophila hydei. Chromosoma 102:526–545

    Google Scholar 

  • Howe M, Dimitri P, Berloco M, Wakimoto BT (1995) Cis-effects of heterochromatin on euchromatic and heterochromatic gene expression in Drosophila melanogaster. Genetics 140:1033–1045

    Google Scholar 

  • Kroeger H, Müller G (1973) Control of puffing activity in three chromosomal segments of explanted salivary gland cells of Chronomus thummi by variation in extracellular Na+, K+, and Mg2+. Exper Cell Res 82:89–94

    Google Scholar 

  • Lezzi M, Robert M (1972) Chromosomes isolated from unfixed salivary glands of Chironomus. In: Beermann W (ed) Developmental studies on giant chromosomes. Springer, Berlin Heidelberg New York, pp 35–57

    Google Scholar 

  • Liu K, Sandgren EP, Palmiter RD, Stein A (1995) Rat growth hormone gene introns stimulate nucleosome alignment in vitro and in transgenic mice. Proc Natl Acad Sci USA 92:7724–7728

    Google Scholar 

  • Locke J, Kotarski MA, Tartof KD (1988) Dosage-dependent modifiers of position effect variegation in Drosophila and a mass action model that explains their effect. Genetics 120:181–198

    Google Scholar 

  • Moore GD, Sinclair DA, Grigliatti TA (1983) Histone gene deficiencies and position-effect variegation in Drosophila melanogaster. Genetics 105:327–344

    Google Scholar 

  • Pardue ML, Hennig W (1990) Heterochromatin: junk or collectors item? Chromosoma 100:3–7

    Google Scholar 

  • Paro R, Hogness DS (1991) The Polycomb protein shares a homologous domain with a heterochromatin-associated protein of Drosophila. Proc Natl Acad Sci USA 88:263–267

    Google Scholar 

  • Ptashne M (1992) A genetic switch, 2 edn. Cell Press, Blackwell, Cambridge, Mass. 191 pp

    Google Scholar 

  • Raff JW, Kellum R, Alberts B (1994) The Drosophila GAGA transcription factor is associated with specific regions of heterochromatin throughout the cell cycle. EMBO J 24:5977–5983

    Google Scholar 

  • Renauld H, Aparicio OM, Zierath PD, Billington BL, Chhablani SK, Gottschling DE (1993) Silent domains are assembled continuously from the telomere and are defined by promoter distance and strength, and by SIR3 dosage. Genes Develop 7:1133–1145

    Google Scholar 

  • Robertson LM, Kerppola TK, Vendrell M, Luk D, Smeyne RJ, Bocchiaro C, Morgan JL, Curran T (1995) Regulation of c-fos expression in transgenic mice requires multiple interdependent transcription control elements. Neuron (in press)

  • Schultz J (1936) Variegation in Drosophila and the inert chromosomal regions. Proc Natl Acad Sci USA 22:27–33

    Google Scholar 

  • Stillman B (1993) Replicator renaissance. Nature 366:506–507

    Google Scholar 

  • Tartof KD, Bremer M (1990) Mechanisms for the construction and developmental control of heterochromatin formation and imprinted chromosome domains. Development (Suppl) pp 35–45

  • Tschiersch B, Hormann A, Krauss V, Dorn R, Korge G, Reuter G (1994) The protein encoded by the Drosophila position-effect variegation suppressor gene Su(var)3–9 combines domains of antagonistic regulators of homeotic gene complexes. EMBO J 13:3822–3831

    Google Scholar 

  • Wakimoto B, Hearn MG (1990) The effects of chromosome rearrangements on the expression of heterochromatic genes in chromosome 2L of D. melanogaster. Genetics 125:141–154

    Google Scholar 

  • Zuckerkandl E (1974) A possible role of “inert” heterochromatin in cell differentiation. Action and competition for “locking” molecules. Biochimie 56:937–954

    Google Scholar 

  • Zuckerkandl E (1978) Multilocus enzymes, gene regulation, and genetic sufficiency. J Mol Evol 12:57–89

    Google Scholar 

  • Zuckerkandl E (1981) A general function of noncoding polynucleotide sequences. Molec Biol Rep 7:149–158

    Google Scholar 

  • Zuckerkandl E (1986) Polite DNA: functional density and functional compatibility in genomes. J Mol Evol 24:12–27

    Google Scholar 

  • Zuckerkandl E (1992) Revisiting junk DNA. J Mol Evol 34: 259–271

    Google Scholar 

  • Zuckerkandl E, Villet R (1988) Generation of high specificity of effect through low-specificity binding of proteins to DNA. FEBS Lett 231:291–298

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zuckerkandl, E., Hennig, W. Tracking heterochromatin. Chromosoma 104, 75–83 (1995). https://doi.org/10.1007/BF00347689

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00347689

Keywords

Navigation