Skip to main content
Log in

A quantitative approach to cytoarchitectonics

X. The areal pattern of the neostriatum in the domestic pigeon, Columba livia f.d. A cyto- and myeloarchitectonical study

  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Summary

The areal pattern of the neostriatum of the domestic pigeon, Columba livia f.d., is described in detail. The map was completed with the help of cyto- and myeloarchitectonical studies during which both qualitative and quantitative methods were applied. The map is divided into 16 areas which are characterized in this paper. Most of these areas can be interpreted as being not only structural but also functional units. The areas Ne 1, Ne 7, and Ne 12 represent primary projection fields. The areas Ne 2, Ne 4, Ne 5, Ne 9, Ne 13, and Ne 14 can be regarded as associative areas, closely connected with the primary areas. The areas Ne 6, Ne 11, Ne 15, and Ne 16 are described with regard to a possible integrative function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berkhoudt H (1980) Touch and taste in the mallard (Anas platyrhynchos L.). Diss Rijksuniv Leiden

  • Bonke BA, Bonke D, Scheich H (1979) Connectivity in the auditory forebrain nuclei in the Guinea fowl (Numida meleagris). Cell Tissue Res 200:101–121

    Google Scholar 

  • Bonke D, Scheich H, Langner G (1979) Responsivness of units in the auditory neostriatum of the Guinea fowl (Numida meleagris) to species-specific calls and synthetic stimuli. Tonotopy and functional zones. J Comp Physiol 132:243–255

    Google Scholar 

  • Brodmann K (1909) Vergleichende Lokalisationslehre der Großhirnrinde. Barth, Leipzig

    Google Scholar 

  • Bumm A (1883) Das Großhirn der Vögel. Z wiss Zool 38:430–467

    Google Scholar 

  • Craigie EH (1928) Observations of the brain of the humming bird (Chrysolampis mosquitos Linn and Chlorostilbon caribaeus Lat) J Comp Neurol 45:377–481

    Google Scholar 

  • Craigie EH (1930) Studies on the brain of the kiwi Apteryx australis. J Comp Neurol 49:223–357

    Google Scholar 

  • Craigie EH (1932) The cell structure of the cerebral hemisphere of the humming bird. J Comp Neurol 56:135–168

    Google Scholar 

  • Divac I, Mogenson J (pers comm) The prefrontal ‘cortex’ in the pigeon. Catecholamine histofluorescence

  • Divac I, Wikmark RGE, Gade A (1975) Spontaneus alternation in rats with lesions in the frontal lobes. An extension on frontal lobe syndrom. Physiol Psychol 3:39–42

    Google Scholar 

  • Dubbeldam JL, Brauch CSM, Don A (1981) Studies on the somatotopy of the trigeminal system in the mallard (Anas platyrhynchos L) III. Afferents and organisation of the nucleus basalis. J Comp Neurol 196:391–405

    Google Scholar 

  • Ebinger P, Löhmer R (1984) Comparative investigations on brains of rock doves, domestic and urban pigeons (Columba l. livia). Z Zool Syst Evolut-forsch 22:136–145

    Google Scholar 

  • Edinger L, Wallenberg A (1899) Untersuchungen über das Gehirn der Tauben. Anat Anz 15:245–271

    Google Scholar 

  • Edinger L, Wallenberg A, Holmes G (1903) Untersuchungen über die vergleichende Anatomie des Gehirns. 5. Das Vorderhirn der Vögel. Abh Senckenberg Naturf Ges 20:343–426

    Google Scholar 

  • Emmerton J (1983) Functional morphology of the visual system. In: Abs M (ed) Physiology and behaviour of the pigeon. Academic Press, London, pp 221–244

    Google Scholar 

  • Erulkar DS (1955) Tactile and auditory areas of the brain of the pigeon. An experimental study by means of evoked potentials. J Comp Neurol 103:421–458

    Google Scholar 

  • Fleischhauer K, Zilles K, Schleicher A (1980) A revised cytoarchitectonic map of the neocortex of the rabbit (Oryctolagus cuniculus). Anat Embryol 161:121–143

    Google Scholar 

  • Fritz W (1949) Vergleichende Untersuchungen über den Anteil von Striatumteilen am Hemisphärenvolumen des Vogelhirns. Rev Suisse Zool 56:461–491

    Google Scholar 

  • Gallyas F (1979) Silver staining by means of physical development. Neurolog Res 1:230–209

    Google Scholar 

  • Gogan P (1963) Projections sensorielle au niveau du telencephale chez le pigeon sans anesthesie generale. J Physiol Paris 55:258–259

    Google Scholar 

  • Gogan P (1965) Recherches sur la role fonctionnel du telencephale du pigeon. Diss Univ Paris

  • Güntürkün O (1984) A third primary visual area in the telencephalon of the pigeon. Brain Res 294:247–254

    Google Scholar 

  • Huber GC, Crosby EC (1929) The nuclei and fibre paths of the avian diencephalon, with consideration of telencephalic and certain mesencephalic centres and connections. J Comp Neurol 48:1–225

    Google Scholar 

  • Jungherr EL (1969) The neuroanatomy of the domestic fowl (Gallus domesticus). Avian diseases (special issue) 1–126

  • Källen B (1962) II. Embryogenesis of brain nuclei in the chick telencephalon. Erg Anat.-Entwicklungsgesch 36:62–82

    Google Scholar 

  • Kappers CAU (1922) The ontogenetic development of the corpus striatum in birds and a comparison with mammals and man. Proc Kon Akad v Wetensch te Amsterdam 26:135–158

    Google Scholar 

  • Kappers CAU, Huber GC, Crosby EC (1936) The comparative anatomy of the nervous system of vertebrates, including man. Macmillan, New York

    Google Scholar 

  • Karten HJ (1967) The organization of the avian telencephalon and some speculations on the phylogeny of the amniote telencephalon. Ann NY Acad Sci 167:164–179

    Google Scholar 

  • Karten HJ (1968) The ascending auditory pathway in the pigeon (Columba livia). II. Telencephalic projections of the nucleus ovoidalis thalami. Brain Res 11:134–153

    Google Scholar 

  • Karten HJ (1979) Visual lemniscal pathways in birds. In: Granda AM, Maxwell JH (eds) Neural mechanism of behaviour in the pigeon. New York, London, pp 409–430

  • Karten HJ, Hodos W (1967) A stereotaxic atlas of the brain of the pigeon (Columba livia). The Johns Hopkins Press, Baltimore

    Google Scholar 

  • Karten HJ, Hodos W (1970) Telencephalic projections of the nucleus rotundus in the pigeon (Columba livia). J Comp Neurol 140:35–52

    Google Scholar 

  • Kelly DB, Nottebohm F (1979) Projections of a telencephalic auditory nucleus — Field L — in the canary. J Comp Neurol 183:455–470

    Google Scholar 

  • Kuhlenbeck H (1938) The ontogenetic development and phylogenetic significance of the cortex telencephali in the chick. J Comp Neurol 69:273–301

    Google Scholar 

  • Kuhlenbeck H (1977) The central nervous system of vertebrates. Derivatives of the prosencephalon. Vol 5/I. Karger, Basel, München, Paris, London, New York, Sydney

    Google Scholar 

  • Leppelsack HJ (1974) Funktionelle Eigenschaften der Hörbahn im Feld L des Neostriatum caudale des Staren (Sturnus vulgaris L. Aves). J Comp Physiol 88:271–320

    Google Scholar 

  • Maier V, Scheich H (1983) Acoustic imprinting leads to differential 2-deoxy-D-glucose uptake in the chick forebrain. Proc Natl Acad Sci 80:3860–3864

    Google Scholar 

  • Necker R (1983a) Somatosensory system. In: Abs M (ed) Physiology and behaviour of the pigeon. Academic Press, London, pp 169–192

    Google Scholar 

  • Necker R (1983b) Hearing. In: Abs M (ed) Physiology and behaviour of the pigeon. Academic Press, London pp 193–219

    Google Scholar 

  • Rehkämper G, Necker R (1982) Somatosensorische Zentren im Endhirn der Taube und ihre afferenten Verbindungen. Verh Dtsch Zool Ges Hannover, p 256

  • Rehkämper G, Zilles K, Schleicher A (1984) A quantitative approach to cytoarchitectonics. IX. The areal pattern of the hyperstriatum ventrale in the domestic pigeon, Columba livia f.d. Anat Embryol 169:319–327

    Google Scholar 

  • Revzin AM (1970) Some characteristics of wide-fil ed units in the brain of the pigeon. Brain Behav Evol 3:195–204

    Google Scholar 

  • Ritchie TC, Cohen DH (1977) The avian tectofugal visual pathway: Projections of its telencephalon target ectostriatal complex. Neurosci Abstr. 3:94 (cited after Karten, 1979)

    Google Scholar 

  • Romeis B (1968) Mikroskopische Technik. Oldenbourg, München Wien

    Google Scholar 

  • Rose M (1914) Über die architektonische Gliederung des Vorderhirns der Vögel. J Psychol Neurol 21:278–352

    Google Scholar 

  • Scheich H, Bonke BA, Bonke D, Langner G (1979) Functional organization of some auditory nuclei in the guinea fowl demonstrated by the 2-deoxyglucose technique. Cell Tissue Res 204:17–27

    Google Scholar 

  • Schleicher A, Zilles K, Kretschmann HJ (1978) Automatische Registrierung und Auswertung eines Grauwertindex in histologischen Schnitten. Verh Anat Ges 72:413–415

    Google Scholar 

  • Schroeder K (1911) Der Faserverlauf im Vorderhirn des Huhns. J Psychol Neurol 18:115–173

    Google Scholar 

  • Stingelin W (1956) Studien am Vorderhirn von Waldkauz (Strix alucoL) und Turmfalk (Falco tinnunculus). Rev Suisse Zool 63:551–660

    Google Scholar 

  • Stingelin W (1958) Vergleichend morphologische Untersuchungen am Vorderhirn der Vögel auf cytologischer und cytoarchitektonischer Grundlage. Helbig und Lichtenhahn, Basel

    Google Scholar 

  • Veenman CL (1984) The organization of the nucleus basalis-neostriatum complex in the goose (Anser anser L) Diss Rijksuniv Leiden

  • Wallenberg A (1902) Eine zentrifugal leitende direkte Verbindung der frontalen Vorderhirnbasis mit der Oblongata (+Rückenmark?) bei der Ente. Anat Anz 22:289–292

    Google Scholar 

  • Wallenberg A (1903) Der Ursprung des Tractus isthmo-striatus (oder bulbo-striatus) der Taube. Neurol Centralb 22:98–101

    Google Scholar 

  • Witkovsky P, Zeigler HP, Silver R (1973) The nucleus basalis of the pigeon. A single unit analysis. J Comp Neurol 147:110–128

    Google Scholar 

  • Wree A, Zilles K, Schleicher A (1981) A quantitative approach to cytoarchitectonics. VII. The areal pattern of the cortex of the guinea pig. Anat Embryol 162:81–103

    Google Scholar 

  • Wree A, Zilles K, Schleicher A (1983) A quantitative approach to cytoarchitectonics. VIII. The areal pattern of the cortex of the albino mouse. Anat Embryol 166:333–353

    Google Scholar 

  • Zilles K, Rehkämper G, Schleicher A (1979a) A quantitative approach to cytoarchitectonics. V. The areal pattern of the cortex of Microcebus murinus (E Geoffroy 1828), (Lemuridae, Primates). Anat Embryol 157:269–289

    Google Scholar 

  • Zilles K, Rehkämper G, Stephan H, Schleicher A (1979b) A quantitative approach to cytoarchitectonics. IV. The areal pattern of the cortex of Galago demidovii (E Geoffroy 1976), (Lorisidae, Primates). Anat Embryol 159:353–360

    Google Scholar 

  • Zilles K, Stephan H, Schleicher A (1982) Quantitative cytoarchitectonics of the cerebral cortices of several prosimian species. In: Armstrong E, Falk D (eds) Primate brain evolution: methods and concepts. Plenum Press, New York London, pp 177–201

    Google Scholar 

  • Zilles K, Blohm U, Koch I (1983) Neurohistologische Methoden 1. Markscheidenfärbung. MTA praxis 29:205–207

    Google Scholar 

  • Zilles K, Wree A, Schleicher A, Divac I (1984) The monocular and binocular subfields of the rat's primary visual cortex: A quantitative morphological approach. J Comp Neurol 226:391–402

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by Deutsche Forschungsgemeinschaft (SFB 114, Zi 492/4-4)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rehkämper, G., Zilles, K. & Schleicher, A. A quantitative approach to cytoarchitectonics. Anat Embryol 171, 345–355 (1985). https://doi.org/10.1007/BF00347023

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00347023

Key words

Navigation