Skeleton and sclerite formation in the precious red coral Corallium rubrum

Abstract

The carbonate skeleton of the gorgonian coral Corallium rubrum (L.) is composed of both a skeletal axis and numerous sclerites scattered in the mesoglea. Studies carried out on these skeletal elements and their associated tisues using microscopy and X-ray microanalysis, suggest a close relationship between the process of sclerite formation and skeletogenesis. The skeleton is surrounded by an axial epithelium composed of a single cell type. These cells associate intimately with mesogleal sclerites and scleroblasts, incorporating them into a nascent skeleton at the branch tip. Subsequent (sub-apical) growth appears to occur solely through the agency of the axis epithelial cells that serve to physically separate mesogleal sclerites and scleroblasts from contact with the axis. The epithelium is associated with the production of layered calcite crystals and irregular protuberances that constitute the mature, calcareous skeleton. Free sclerites in the mesoglea appear to be the product of multiple cells that are cytologically indistinguishable from those in the axis epithelium. Like the axis, sclerites are produced as layers of calcite crystals with irregular protuberances. The protuberances differ only slightly from those of the axis, and the skeleton is mineralogically indistinguishable from the sclerites. Thus, the skeleton of red coral is not primarily the product of fused sclerites. Instead, we suggest that the axis epithelium treats the incipient skeleton as if it were the core of a single sclerite, and conversely, that the mesogleal scleroblasts of C. rubrum constitute a fragmented axis epithelium.

This is a preview of subscription content, log in to check access.

Literature cited

  1. Allemand, D., Grillo, M.-C. (1992). 45Ca uptake and deposition by the Mediterranean red coral Corallium rubrum. J. exp. Zool. 262:237–246

    Google Scholar 

  2. Bayer, F. M. (1955). Contributions to the nomenclature, systematics and morphology of the Octocorallia. Proc. U.S. natn. Mus. 105:207–220

    Google Scholar 

  3. Bayer, F. M. (1961). The shallow-water Octocorallia of the West Indian Region. Martinus Nijhoff, The Hague, Netherlands

    Google Scholar 

  4. Carpine, C., Grasshoff, M. (1975). Les gorgonaires de la Mediteranee. Bull. Inst. océanogr. Monaco 71:1–140

    Google Scholar 

  5. Eisenman, E. A., Alfert, M. (1982). A new fixation procedure for preserving the ultrastructure of marine invertebrate tissues. J. Microscopy 125:117–120

    Google Scholar 

  6. Goldberg, W. M. (1976). Comparative study of the chemistry and structure of gorgonian and antipatharian coral skeletons. Mar. Biol. 35:253–267

    Google Scholar 

  7. Goldberg, W. M. (1988). Chemistry, histochemistry and microscopy of the organic matrix of spicules from a gorgonian coral. Histochemistry 89:163–170

    Google Scholar 

  8. Goldberg, W. M., Benayahu, Y. (1987). Spicule formation in the gorgonian coral Pseudoplexaura flagellosa. 1. Demonstration of intracellular and extracellular growth and the effect of ruthenium red during decalcification. Bull. mar. Sci. 40:287–303

    Google Scholar 

  9. Hickson, S. J. (1924). An introduction to the study of recent corals. Manchester University Press, London

    Google Scholar 

  10. Kükenthal, W. (1919). Gorgonaria. Wiss. Ergebn. dt. Tiefsee-Exped. ‘Valdivia’ 13:30–66

    Google Scholar 

  11. Laborel, J., Vacelet, J. (1961). Répartition bionomique de Corallium rubrum Lmck dans les grottes et falaises sous-marines. Rapp. P.-v. Réun. Commn int. Explor. scient. Méditerr. 16: 465–469

    Google Scholar 

  12. Lacaze-Duthiers, H. (1864). Histoire naturelle du corail. J. B. Bailiére et Fil. Paris

    Google Scholar 

  13. Lawniczak, A. (1987). Les modalitiés de croissance de l'axe calcaire chez Corallium johnsoni (Cnidaria: Gorgonaria: Scleraxonia). Senckenberg. marit. 19:149–161

    Google Scholar 

  14. Ledger P. W., Franc, S. (1978). Calcification of the collagenous axial skeleton of Veretillum cynomorium Pall. (Cnidaria: Pennatulacea). Cell Tissue Res. 192:249–266

    Google Scholar 

  15. Lewis J.C., Barnowski, A., Telesnicki, G. J. (1992). Characteristics of carbonates of gorgonian axes (Coelenterata, Octocorallia). Biol. Bull. mar. biol. Lab., Woods Hole 183:278–296

    Google Scholar 

  16. Mateu, G., Traveria, A., Fontarnau, R., Masso, C. (1986). Biodiagénesis mineralogica del Corallium rubrum (L.) Boln Inst. esp. Oceanogr. 3:1–12

    Google Scholar 

  17. Müller, R. (1910). Über die Bildung des Achsenskeletts von Corallium. Mitt. zool. Stn Neapel 20:101–107

    Google Scholar 

  18. Muzik, K., Wainwright, S. (1977). Morphology and habitat of five Fijian sea fans. Bull. mar. Sci. 27:308–337

    Google Scholar 

  19. Wainwright, S. A., Koehl, M. A. R. (1976). The nature of flow and the reaction of benthic Cnidaria to it. In: Mackie, G. O. (ed.) Coelenterate ecology and behavior. Plenum Press, New York, p. 5–21

    Google Scholar 

  20. Watabe, N., Kingsley, J. (1992). Calcification in octocorals. In: Suga, S., Watabe, N. (eds.) Hard tissue mineralization and demineralization. Springer-Verlag, New York, p. 127–147

    Google Scholar 

  21. Weinberg, S. (1976). Revision of the common Octocorallia of the Mediterranean circalittoral. 1. Gorgonacea. Beaufortia 24:63–103

    Google Scholar 

  22. Weinberg, S. (1978). Mediterranean octocorallian communities and the abiotic environment. Mar. Biol. 49:41–57

    Google Scholar 

  23. Weinberg, S. (1979). The light-dependent behaviour of planulae larvae of Eunicella singularis and Corallium rubrum and its implication for octocorallian ecology. Bijdr. Dierk. 49:16–30

    Google Scholar 

Download references

Author information

Affiliations

Authors

Additional information

Communicated by N. H. Marcus, Tallahassee

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Grillo, M., Goldberg, W.M. & Allemand, D. Skeleton and sclerite formation in the precious red coral Corallium rubrum . Marine Biology 117, 119–128 (1993). https://doi.org/10.1007/BF00346433

Download citation

Keywords

  • Epithelial Cell
  • Calcite
  • Single Cell
  • Multiple Cell
  • Carbonate Skeleton