Advertisement

Marine Biology

, Volume 117, Issue 1, pp 119–128 | Cite as

Skeleton and sclerite formation in the precious red coral Corallium rubrum

  • M.-C. Grillo
  • W. M. Goldberg
  • D. Allemand
Article

Abstract

The carbonate skeleton of the gorgonian coral Corallium rubrum (L.) is composed of both a skeletal axis and numerous sclerites scattered in the mesoglea. Studies carried out on these skeletal elements and their associated tisues using microscopy and X-ray microanalysis, suggest a close relationship between the process of sclerite formation and skeletogenesis. The skeleton is surrounded by an axial epithelium composed of a single cell type. These cells associate intimately with mesogleal sclerites and scleroblasts, incorporating them into a nascent skeleton at the branch tip. Subsequent (sub-apical) growth appears to occur solely through the agency of the axis epithelial cells that serve to physically separate mesogleal sclerites and scleroblasts from contact with the axis. The epithelium is associated with the production of layered calcite crystals and irregular protuberances that constitute the mature, calcareous skeleton. Free sclerites in the mesoglea appear to be the product of multiple cells that are cytologically indistinguishable from those in the axis epithelium. Like the axis, sclerites are produced as layers of calcite crystals with irregular protuberances. The protuberances differ only slightly from those of the axis, and the skeleton is mineralogically indistinguishable from the sclerites. Thus, the skeleton of red coral is not primarily the product of fused sclerites. Instead, we suggest that the axis epithelium treats the incipient skeleton as if it were the core of a single sclerite, and conversely, that the mesogleal scleroblasts of C. rubrum constitute a fragmented axis epithelium.

Keywords

Epithelial Cell Calcite Single Cell Multiple Cell Carbonate Skeleton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Allemand, D., Grillo, M.-C. (1992). 45Ca uptake and deposition by the Mediterranean red coral Corallium rubrum. J. exp. Zool. 262:237–246Google Scholar
  2. Bayer, F. M. (1955). Contributions to the nomenclature, systematics and morphology of the Octocorallia. Proc. U.S. natn. Mus. 105:207–220Google Scholar
  3. Bayer, F. M. (1961). The shallow-water Octocorallia of the West Indian Region. Martinus Nijhoff, The Hague, NetherlandsGoogle Scholar
  4. Carpine, C., Grasshoff, M. (1975). Les gorgonaires de la Mediteranee. Bull. Inst. océanogr. Monaco 71:1–140Google Scholar
  5. Eisenman, E. A., Alfert, M. (1982). A new fixation procedure for preserving the ultrastructure of marine invertebrate tissues. J. Microscopy 125:117–120Google Scholar
  6. Goldberg, W. M. (1976). Comparative study of the chemistry and structure of gorgonian and antipatharian coral skeletons. Mar. Biol. 35:253–267Google Scholar
  7. Goldberg, W. M. (1988). Chemistry, histochemistry and microscopy of the organic matrix of spicules from a gorgonian coral. Histochemistry 89:163–170Google Scholar
  8. Goldberg, W. M., Benayahu, Y. (1987). Spicule formation in the gorgonian coral Pseudoplexaura flagellosa. 1. Demonstration of intracellular and extracellular growth and the effect of ruthenium red during decalcification. Bull. mar. Sci. 40:287–303Google Scholar
  9. Hickson, S. J. (1924). An introduction to the study of recent corals. Manchester University Press, LondonGoogle Scholar
  10. Kükenthal, W. (1919). Gorgonaria. Wiss. Ergebn. dt. Tiefsee-Exped. ‘Valdivia’ 13:30–66Google Scholar
  11. Laborel, J., Vacelet, J. (1961). Répartition bionomique de Corallium rubrum Lmck dans les grottes et falaises sous-marines. Rapp. P.-v. Réun. Commn int. Explor. scient. Méditerr. 16: 465–469Google Scholar
  12. Lacaze-Duthiers, H. (1864). Histoire naturelle du corail. J. B. Bailiére et Fil. ParisGoogle Scholar
  13. Lawniczak, A. (1987). Les modalitiés de croissance de l'axe calcaire chez Corallium johnsoni (Cnidaria: Gorgonaria: Scleraxonia). Senckenberg. marit. 19:149–161Google Scholar
  14. Ledger P. W., Franc, S. (1978). Calcification of the collagenous axial skeleton of Veretillum cynomorium Pall. (Cnidaria: Pennatulacea). Cell Tissue Res. 192:249–266Google Scholar
  15. Lewis J.C., Barnowski, A., Telesnicki, G. J. (1992). Characteristics of carbonates of gorgonian axes (Coelenterata, Octocorallia). Biol. Bull. mar. biol. Lab., Woods Hole 183:278–296Google Scholar
  16. Mateu, G., Traveria, A., Fontarnau, R., Masso, C. (1986). Biodiagénesis mineralogica del Corallium rubrum (L.) Boln Inst. esp. Oceanogr. 3:1–12Google Scholar
  17. Müller, R. (1910). Über die Bildung des Achsenskeletts von Corallium. Mitt. zool. Stn Neapel 20:101–107Google Scholar
  18. Muzik, K., Wainwright, S. (1977). Morphology and habitat of five Fijian sea fans. Bull. mar. Sci. 27:308–337Google Scholar
  19. Wainwright, S. A., Koehl, M. A. R. (1976). The nature of flow and the reaction of benthic Cnidaria to it. In: Mackie, G. O. (ed.) Coelenterate ecology and behavior. Plenum Press, New York, p. 5–21Google Scholar
  20. Watabe, N., Kingsley, J. (1992). Calcification in octocorals. In: Suga, S., Watabe, N. (eds.) Hard tissue mineralization and demineralization. Springer-Verlag, New York, p. 127–147Google Scholar
  21. Weinberg, S. (1976). Revision of the common Octocorallia of the Mediterranean circalittoral. 1. Gorgonacea. Beaufortia 24:63–103Google Scholar
  22. Weinberg, S. (1978). Mediterranean octocorallian communities and the abiotic environment. Mar. Biol. 49:41–57Google Scholar
  23. Weinberg, S. (1979). The light-dependent behaviour of planulae larvae of Eunicella singularis and Corallium rubrum and its implication for octocorallian ecology. Bijdr. Dierk. 49:16–30Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • M.-C. Grillo
    • 1
  • W. M. Goldberg
    • 2
  • D. Allemand
    • 1
  1. 1.Obervatoire Océanologique EuropéenCentre Scientifique de MonacoMonte CarloPrincipality of Monaco
  2. 2.Department of Biological SciencesFlorida International UniversityMiamiUniversity ParkUSA

Personalised recommendations