Marine Biology

, Volume 115, Issue 2, pp 263–266 | Cite as

A study of mucus from the solitary coral Fungia fungites (Scleractinia: Fungiidae) in relation to photobiological UV adaptation

  • J. H. Drollet
  • P. Glaziou
  • P. M. V. Martin


The ultraviolet (UV)-absorbance spectrum (300 to 360 nm) of mucus obtained from Fungia fungites (L. 1758, collected in Tahiti in 1991) after being exposed to air for up to 5 min was measured, and UV-absorbing compounds were demonstrated to be present in the mucus, with a peak at 332 nm. The concentration of these UV-absorbing compounds was at a maximum in the first 2 min of secretion and decreased thereafter. Concentration was significantly related to the weight of the coral. Also, as corals were adapted to bathymetric levels of UV radiation, mucus concentration of UV-absorbing compounds decreased significantly with increasing depth.


Radiation Absorbance Spectrum Solitary Coral Mucus Concentration Bathymetric Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Baker, K. S., Smith, R. C., Green, A. E. S. (1980). Middle ultraviolet radiation reaching the ocean surface. Photochem. Photobiol. 32: 362–374Google Scholar
  2. Bener, P. (1969). Spectral intensity of natural ultraviolet radiation and its dependence on various parameters. In: Urbach, F. (ed.) The biological effects of ultraviolet radiation. Pergamon Press, London, pp. 351–358Google Scholar
  3. Calkins, J. (1982) The role of solar ultraviolet radiation in marine ecosystems. Plenum Press, New YorkGoogle Scholar
  4. Dunlap, W. C., Chalker, B. E. (1986). Identification and quantitation of near-UV absorbing compounds (S-320) in a hermatypic scleractinian. Coral Reefs 5: 155–159Google Scholar
  5. Dunlap, W. C., Chalker, B. E., Bandaranayake, W. M. (1989). Ultraviolet light absorbing agents derived from tropical marine organisms of the Great Barrier Reef, Australia. Proc. 6th int. coral Reefs Symp. 3: 89–93 [Choat, J. H. et al. (eds.) Sixth International Coral Reef Symposium Executive Committee, Townsville, Australia]Google Scholar
  6. Dustan, P. (1982). Depth dependent photoadaptation by zooxanthellae of the reef coral Montastrea annularis. Mar. Biol. 68: 253–264Google Scholar
  7. Fleischmann, E. M. (1989). The measurement and penetration of ultraviolet radiation into tropical marine water. Limnol. Oceanogr. 34: 1623–1629Google Scholar
  8. Gladfelter, E. H. (1988). The physiological basis of coral bleaching. In: Ogden, J. C., Wickland, R. I. (eds.) Mass bleaching of coral reefs in the Caribbean: a research strategy, Vol. 18. Undersea Res. Prog. NOAA, Res. Rept. St. Croix, US Virgin IslandsGoogle Scholar
  9. Glynn, P. W. (1988). Coral bleaching and mortality in the tropical Eastern Pacific during the 1982–83 El Nino warning event. In: Ogden, J. C., Wickland, R. I. (eds.) Mass bleaching of coral reefs in the Caribbean: a research strategy, Vol. 88. Nat. Undersea Res. Prog. NOAA, Res. Rept., St. Croix, US Virgin IslandsGoogle Scholar
  10. Goreau, T. F. (1961). On the relation of calcification to primary production in reef building organisms. Biology of Hydra. University of Miami Press, Coral Gables, FloridaGoogle Scholar
  11. Goreau, T. F. (1964). Mass expulsion of zooxanthellae from Jamaica reef communities after hurricane flora. Science, N.Y. 145: 383–386Google Scholar
  12. Green, A. E. S., Sawada, T., Shettle, E. P. (1974). The middle ultraviolet radiation reaching the ground. Photochem. Photobiol. 19: 151–159Google Scholar
  13. Hayes, R. L., Bush, P. G. (1990). Microscopic observations of recovery in the reef-building scleractinian coral, Montastrea annularis, after bleaching on a Cayman reef. Coral Reefs 8: 203–209Google Scholar
  14. Hoegh-Guldberg, O., Smith, G. J. (1988). Physiological correlates of light and temperature stress in two pocilloporid corals. Proc. Assoc. Is. Mar. Labs. Carib. 21: 57Google Scholar
  15. Hubbard, J. A., Pocock, Y. P. (1972). Sediment rejection by recent scleractinian corals: a key to paleoenvironmental reconstruction. Geol. Rdsch. 61: 598–626Google Scholar
  16. Jaap, W. C. (1988). The 1987 zooxanthellae expulsion event at Florida reefs. In: Odgen, J., Wicklund, R. (eds.) Mass bleaching of coral reefs: a research strategy, Vol. 88. Nat. Undersea Res. Proc. Res. Rept., St. Croix, US Virgin IslandsGoogle Scholar
  17. Jerlov, N. G. (1950). Ultraviolet radiation in the sea. Nature, Lond. 116: 111–112Google Scholar
  18. Jerlov, N. G. (1968). Optical oceanography. Elsevier, AmsterdamGoogle Scholar
  19. Jerlov, N. G. (1976). Marine optics. Elsevier, AmsterdamGoogle Scholar
  20. Jokiel, P. L. (1980). Solar ultraviolet radiation and coral reef epifauna. Science, N.Y. 207: 1069–1071Google Scholar
  21. Jokiel, P. L., York Jr., R. H. (1982). Solar ultraviolet photobiology of the reef coral Pocillopora damicornis and symbiotic zooxanthellae. Bull. mar. Sci. 32: 301–315Google Scholar
  22. Jokiel, P. L., York Jr., R. H. (1984). Importance of ultraviolet radiation in microalgae growth photoinhibitions. Limnol. Oceanogr. 29: 192–199Google Scholar
  23. Krupp, D. A. (1982). The composition of the mucus from the mushroom coral, Fungia scutaria. In: Proc 4th int. Symp. coral Reefs 2: 69–73 [Gomez, E. D. et al (eds.) Marine Sciences Center University of the Philippines, Quezon City]Google Scholar
  24. Krupp, D. A. (1984). Mucus production by corals exposed during an extreme low tide. Pacif. Sci. 38: 1–11Google Scholar
  25. Lang, J. C., Chornesky, E. A. (1990). Competition between scleractinian reef corals. A review of mechanisms and effects. In: Dubinsky, Z. (ed.) Ecosystems of the world, Vol. 25. Coral Reefs. Elsevier, Amsterdam, p. 209–252Google Scholar
  26. Lewis, J. B. (1973). The formation of mucus envelopes by hermatypic corals of the genus porites. Caribb. J. Sci. 13: 207–209Google Scholar
  27. Lorenzen, C. J. (1979). Ultraviolet radiation and phytoplankton photosynthesis. Limnol. Oceanogr. 24: 1117–1120Google Scholar
  28. Meikle, P., Richards, G. N., Yellowless, D. (1988). Structural investigations on the mucus from six species of coral. Mar. Biol. 99: 187–193Google Scholar
  29. Salvat, B. (1992). Blanchissement et mortalité des scléractiniaires sur les récifs de Moorea (archipel de la Société) en 1991. C.r. hebd. Séanc. Acad. Sci., Paris, 314 (Série III): 105–111Google Scholar
  30. Shibata, K. (1969). Pigments and UV-absorbing substance in corals and blue-green alga living in the Great Barrier Reef. Pl. Cell Physiol, Tokyo 10: 325–335Google Scholar
  31. Smith, R. C., Baker, K. S. (1979). Penetration of UV-B and biologically effective dose rate in natural waters. Photochem. Photobiol. 29: 322–323Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • J. H. Drollet
    • 1
  • P. Glaziou
    • 1
  • P. M. V. Martin
    • 1
  1. 1.Institut Territorial de Recherches Médicales Louis MalardéPapeete, TahitiFrench Polynesia

Personalised recommendations