Skip to main content
Log in

The marine bacterium Alteromonas espejiana induces metamorphosis of the hydroid Hydractinia echinata

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The marine hydroid Hydractinia echinata develops into a primary polyp from a planula larva stage. The planula does not undergo metamorphosis in sterile filtered seawater. Metamorphosis is induced by certain bacteria occurring, as a rule, on the shells of molluscs inhabited by hermit crabs of the genus Eupagurus. Bacteria were isolated from shells occupied by H. echinata, and bacterial clones were selected which had a strong potency for inducing metamorphosis in planula larvae. One such clone was further subcloned for strong metamorphosis-inducing potency and finally investigated for inductive characteristics and for identification purposes. The bacterium is a motile, aerogen, gram-negative rod with a polar flagellum. It was identified on the basis of several physiological characteristics as a strain of the genus Alteromonas espejiana. The ability to induce metamorphosis might not be restricted to A. espejiana. The inhibitor of protein kinase C, sphingosine, inhibited metamorphosis induced by A. espejiana. The metamorphosis-inducing principle is likely to be a lipid, since upon lipid extraction and separation of different lipid classes by solid phase extraction on silica-aminopropyl columns a metamorphosis-inducing fraction was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Ballard, W. W. (1942). The mechanism of synchronous spawning in Hydractinia and Pennaria. Biol. Bull. mar. biol. Lab., Woods Hole 82: 329–339

    Google Scholar 

  • Berking, S. (1984). Metamorphosis of Hydractinia echinata. Insights into pattern formation of hydroids. Wilhelm Roux Arch dev. Biol. 193: 370–378

    Google Scholar 

  • Berking, S. (1991). Control of metamorphosis and pattern formation in Hydractinia (Hydrozoa, Cnidaria). BioEssays 13: 323–329

    Google Scholar 

  • Bitman, J., Wood, D. L., Ruth, J. M. (1981). Two-stage, one-dimensional thin layer chromatographic method for separation of lipid classes. J. Liquid Chromat. 4: 1007–1021

    Google Scholar 

  • Bosca, L., Marquez, C., Martinez-A, C. (1991). B cell triggering by bacterial lipopeptide involves both translocation and activation of the membrane-bound form of protein kinase C. J. Immun. 147: 1463–1469

    Google Scholar 

  • Brancato, M. S., Woollacott, R. M. (1982). Effect of microbial films on settlement of bryozoan larvae (Bugula simplex, B. stolonifera, B. turrila). Mar. Biol. 71: 51–56

    Google Scholar 

  • Cameron, A. M., Hinegardner, R. T. (1974). Initiation of metamorphosis in laboratory cultured sea urchins. Biol. Bull. mar. biol. Lab., Woods Hole 146: 335–342

    Google Scholar 

  • Fitt, W. K., La Bare, M. P., Fuqua, W. C., Walch, M., Coon, S. L., Bonar, D. B., Colwell, R. R., Weiner, R. M. (1989). Factors influencing bacterial production of inducers of settlement behavior of larvae of the oyster Crassostrea gigas. Microb. Ecol. 17: 406–411

    Google Scholar 

  • Henning, G., Benayahu, Y., Hofmann, D. K. (1991). Natural substrates, marine bacteria and a phorbol ester induce metamorphosis in the soft coral Heteroxenia fuscescens (Anthozoa: Octocorallia). Verh. dt. zool. Ges. 84: 486–487

    Google Scholar 

  • Herrmann, K. (1975). Influence of bacteria in inducing metamorphosis and the course of metamorphosis in Actinotrocha branchiata. Verh. dt. zool. Ges. 1974: 112–115

    Google Scholar 

  • Hofmann, D. K., Brand, U. (1987). Induction of metamorphosis in the symbiotic scyphozoan (Cassiopea andromeda): role of marine bacteria and of biochemicals. Symbiosis 4: 99–116

    Google Scholar 

  • Hofmann, D. K., Neumann, R., Henne, K. (1978). Strobilation and initiation of scyphistoma morphogenesis in the rhizostome Cassiopea andromeda (Cnidaria, Scyphozoa). Mar. Biol. 47: 161–176

    Google Scholar 

  • Jägersten, G. (1940). Die Abhängigkeit der metamorphose vom Substrat des Biotops bei Protodrilus. Ark. Zool. 32: 1–12

    Google Scholar 

  • Kaluzny, M. A., Duncan, L. A., Merritt, M. V., Epps, D. E. (1985). Rapid separation of lipid classes in high yield and purity using bonded phase columns. J. Lipid Res. 26: 135–140

    Google Scholar 

  • Kirchman, D., Graham, S., Reish, D., Mitchell, R. (1982). Bacteria induce settlement and metamorphosis of Janua (Dexiospira) brasiliensis Grube (Polychaeta: Spirorbidae). J. exp. mar. Biol. Ecol. 56: 153–163

    Google Scholar 

  • Kroiher, M., Plickert, G., Müller, W. A. (1990). Pattern of cell proliferation in embryogenesis and planula development of Hydractinia echinata predicts the postmetamorphic pattern. Wilhelm Roux Arch dev. Biol. 199: 156–163

    Google Scholar 

  • Leitz, T., Klingmann, G. (1990). Metamorphosis in Hydractinia: studies with activators and inhibitors aiming at protein kinase C and potassium channels. Wilhelm Roux Arch dev. Biol. 199: 107–113

    Google Scholar 

  • Leitz, T., Müller, W. A. (1987). Evidence for the involvement of PI-signaling and diacylglycerol second messengers in the initiation of metamorphosis in the hydroid Hydractinia echinata Fleming. Devl. Biol. 121: 82–89

    Google Scholar 

  • Leitz, T., Müller, U. (1991). Stimulation of metamorphosis in Hydractinia echinata involves generation of lysophosphatidylcholine. Wilhelm Roux Arch dev. Biol. 200: 249–255

    Google Scholar 

  • Mihm, J. W., Banta, W. C. (1981). Effects of adsorbed organic and primary fouling films on bryozoan settlement. J. exp. mar. Biol. Ecol. 54: 167–179

    Google Scholar 

  • Müller, W. A. (1969). Auslösung der Metamorphose durch Bakterien bei den Larven von Hydractinia echinata. Zool. Jb. (Abt. Anat. Ontog. Tiere) 86: 84–95

    Google Scholar 

  • Müller, W. A. (1973a). Induction of metamophosis by bacteria and ions in the planulae of Hydractinia echinata; an approach to the mode of action. Publs Seto mar. biol. Lab. 20: 195–208

    Google Scholar 

  • Müller, W. A. (1973b). Metamorphoseinduktion bei Planulalarven. I. Der bakterielle Induktor. Wilhelm Roux Arch dev. Biol. 173: 107–121

    Google Scholar 

  • Müller, W. A. (1985). Tumor promoting phorbol esters induce metamorphosis and multiple head formation in the hydroid Hydractinia. Differentiation 29: 216–222

    Google Scholar 

  • Müller, W. A., Wieker, F., Eiben, R. (1976). Larval adhesion releasing stimuli and metamorphosis. In: Mackie, G. O. (ed.) Coelenterate ecology and behavior. Plenum Press, New York, p. 339–346

    Google Scholar 

  • Neumann, R. (1979). Bacterial induction of settlement and metamorphosis in the planula larvae of Cassiopea andromeda (Cnidaria: Scyphozoa, Rhizostomeae). Mar. Ecol. Prog. Ser. 1: 21–28

    Google Scholar 

  • Plickert, G., Kroiher, M., Munck, A. (1988). Cell proliferation and early differentiation during embryonic development and metamorphosis of Hydractinia echinata. Development 103: 795–803

    Google Scholar 

  • Raetz, C. R. H., Ulevitch, R. J., Wright, S. D., Sibley, C. H., Ding, A., Nathan, C. F. (1991). Gram-negative endotoxin: an extraordinary lipid with profound effects on eukaryotic signal transduction. FASEB J. 5: 2652–2660

    Google Scholar 

  • Schmahl, G. (1985 a). Bacterially induced stolon settlement in the scyphopolyp of Aurelia aurita (Cnidaria, Scyphozoa). Helgoländer Meeresunters. 39: 33–42

    Google Scholar 

  • Schmahl, G. (1985 b). Induction of stolon settlement in the scyphopolyps of Aurelia aurita (Cnidaria, Scyphozoa, Semaeostomeae) by glycolipids of marine bacteria. Helgolänger Meeresunters. 39: 117–127

    Google Scholar 

  • Spindler, K. D., Müller, W. A. (1972). Induction of metamorphosis by bacteria and by a lithium pulse in the larvae of Hydractinia echinata (Hydrozoa). Wilhelm Roux Arch dev. Biol. 169: 271–280

    Google Scholar 

  • Touchstone, J. C., Levin, S. S., Dobbins, M. F., Carter, P. J. (1981). Differentiation of saturated and unsaturated phospholipids on thin layer chromatograms. High Resolution Chromatography and Chromatography Communications 4: 423–424

    Google Scholar 

  • Weiner, R. M., Coyne, V. E., Brayton, P., West, P., Raiken, S. F. (1988). Alteromonas colwelliana sp. nov., an isolate from oyster habitats. Int. J. system. Bact. 38: 240–244

    Google Scholar 

  • Wightman, P. D., Raetz, C. R. H. (1984). The activation of protein kinase C by biologically active lipid moieties of lipopolysaccharide. J. biol. Chem. 259: 10048–10052

    Google Scholar 

  • Wilson, D. P. (1955). The role of micro-organisms in the settlement of Ophelia bicornis Savigny. J. mar. biol. Ass. U.K. 34: 531–543

    Google Scholar 

  • Wittmann, W. (1977). Auslösung der Metamorphose bei Hydractinia durch Bakterien: Isolicrung und Charakterisierung der Bakterien und der auslösenden Substanz. Doctoral Thesis, Technische Universität Braunschweig, Braunschweig

    Google Scholar 

  • ZoBell, C. E., Allen, E. C. (1935). The significance of marine bacteria in the fouling of submerged surfaces. J. Bact. 29: 239–251

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by O. Kinne, Oldendorf/Luhe

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leitz, T., Wagner, T. The marine bacterium Alteromonas espejiana induces metamorphosis of the hydroid Hydractinia echinata . Marine Biology 115, 173–178 (1993). https://doi.org/10.1007/BF00346332

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00346332

Keywords

Navigation