, Volume 17, Issue 2, pp 97–110 | Cite as

The temperature-related photosynthetic capacity of plants under desert conditions

I. Seasonal changes of the photosynthetic response to temperature
  • O. L. Lange
  • E. -D. Schulze
  • M. Evenari
  • L. Kappen
  • U. Buschbom


Temperature dependence of net photosynthesis under conditions of light saturation and maximum air humidity was measured throughout the season in the Central Negev Desert (Israel). Experimental plants were the wild growing Hammada scoparia and Prunus armeniaca cultivated in the runoff farm of Avdat.

The optimum temperature for net photosynthesis and the upper temperature compensation point of CO2 exchange showed a characteristic seasonal variation with low values in spring and fall and high values in mid-summer. This shift was exhibited by plants growing under conditions of normal soil-water stress as well as by irrigated plants. There was no general correlation between the changes in temperature dependence of net photosynthesis of the plants, their maximum photosynthetic capacity under the experimental conditions, their daily photosynthesis maximum under natural conditions, and their rate of dark respiration. The seasonal shift of the photosynthetic response to temperature cannot be explained by changes in the temperature sensitivity of the stomata. It may be caused by seasonal changes of biochemical and/or biophysical properties.

A number of observations made on other wild plants also showed, in all cases, seasonal shifts of the upper temperature compensation point, with an amplitude of 6.0°C–13.7°C.


  1. Alexandrov, V. Y.: Cytophysiological and cytoecological investigations of resistance of plant cells toward the action of high and low temperature. Quart. Rev. Biol. 39, 35–77 (1964)Google Scholar
  2. Billings, W. D., Godfrey, P. J., Chabot, B. F., Bourque, D. P.: Metabolic acclimation to temperature in arctic and alpine ecotypes of Oxyria digyna. Arctic and Alpine Res. 3, 277–289 (1971)Google Scholar
  3. Björkman, O.: Comparative studies on photosynthesis in higher plants. Photophysiology 8, 1–63 (1973)Google Scholar
  4. Björkman, O., Pearcy, R. W.: Effect of growth temperature on the temperature dependence of photosynthesis in vivo and on CO2 fixation by carboxydismutase in vitro in C3 and C4 species. Carnegie Inst. Year Book 70, 511–520 (1971)Google Scholar
  5. Björkman, O., Pearcy, R. W., Harrison, A. T., Mooney, H.: Photosynthetic adaptation to high temperatures: A field study in Death Valley, California. Science 175, 786–789 (1972)Google Scholar
  6. Chabot, B. F., Billings, W. D.: Origins and ecology of the Sierra alpine flora and vegetation. Ecolog. Monogr. 42, 163–199 (1972)Google Scholar
  7. Chatterton, N. J., McKell, C. M., Strain, B. R.: Intraspecific differences in temperature-induced respiratory acclimation of desert saltbush. Ecology 51, 545–547 (1970)Google Scholar
  8. DePuit, E. J., Caldwell, M. C.: Seasonal pattern of net photosynthesis of Artemisia tridentata. Amer. J. Bot. 60, 426–435 (1973)Google Scholar
  9. Downton, J., Slatyer, R. O.: Temperature dependence of photosynthesis in cotton. Plant Physiol. 50, 518–522 (1972)Google Scholar
  10. Drake, B. G., Salisbury, F. B.: Aftereffects of low and high temperature pretreatment on leaf resistance, transpiration, and leaf temperature in Xanthium. Plant Physiol. 50, 572–575 (1972)Google Scholar
  11. Evenari, M., Shanan, L., Tadmor, N.: The Negev—The challenge of a desert. Cambridge, Mass.: Harvard University Press 1971Google Scholar
  12. Harder, R.: Über die Assimilation von Kälte- und Wärmeindividuen der gleichen Pflanzenspezies. Jb. wiss. Bot. 64, 169–200 (1925)Google Scholar
  13. Hochachka, P. W., Somero, G. N.: Strategies of biochemical adaptation. Philadelphia-London-Toronto: Saunders 1973Google Scholar
  14. Koch, W., Lange, O. L., Schulze, E.-D.: Ecophysiological investigations on wild and cultivated plants in the Negev Desert. I. A mobile laboratory for measuring carbon dioxide and water vapour exchange. Oecologia (Berl.) 8, 296–309 (1971)Google Scholar
  15. Lange, O. L., Koch, W., Schulze, E.-D.: CO2-Gaswechsel und Wasserhaushalt von Pflanzen in der Negev-Wüste am Ende der Trockenzeit. Ber. dtsch. bot. Ges. 82, 39–61 (1969)Google Scholar
  16. Mooney, H. A., Harrison, A. T.: The influence of conditioning temperature on subsequent temperature-related photosynthetic capacity in higher plants. In: Prediction and measurement of photosynthetic productivity, p. 411–417. Wageningen: Centre for Agric. Publ. and Doc. 1970Google Scholar
  17. Mooney, H. A., Shropshire, F.: Population variability in temperature related photosynthetic acclimation. Oecol. Plant, 2, 1–13 (1967)Google Scholar
  18. Mooney, H. A., West, M.: Photosynthetic acclimation of plants of diverse origin. Amer. J. Bot. 51, 825–827 (1964)Google Scholar
  19. Neilson, R. E., Ludlow, M. M., Jarvis, P. G.: Photosynthesis in sitka spruce (Picea sitchensis (Bong.) Carr.). II. Response to temperature. J. appl. Ecol. 9, 721–745 (1972)Google Scholar
  20. Pearson, C. J., Hunt, L. A.: Effects of pretreatment temperature on carbon dioxide exchange in alfalfa. Canad. J. Bot. 50, 1925–1930 (1972)Google Scholar
  21. Pisek, A., Larcher, W., Moser, W., Pack, I.: Kardinale Temperaturbereiche der Photosynthese und Grenztemperaturen des Lebens der Blätter verschiedener Spermatophyten. III. Temperaturabhängigkeit und optimaler Temperaturbereich der Netto-Photosynthese. Flora (Jena), Abt. B 158, 608–630 (1969)Google Scholar
  22. Schulze, E.-D.: Der CO2-Gaswechsel der Buche (Fagus silvatica L.) in Abhängigkeit von den Klimafaktoren im Freiland. Flora (Jena) 159, 177–232 (1970)Google Scholar
  23. Schulze, E.-D., Lange, O. L., Kappen, L., Buschbom, U., Evenari, M.: Stomatal responses to changes in temperature at increasing water stress. Planta (Berl.) 110, 29–42 (1973)Google Scholar
  24. Schulze, E.-D., Lange, O. L., Koch, W.: Ökophysiologische Untersuchungen an Wild- und Kulturpflanzen der Negev-Wüste. II. Die Wirkung der Außenfaktoren auf CO2-Gaswechsel und Transpiration am Ende der Trockenzeit. Oecologia (Berl.) 8, 334–355 (1972a)Google Scholar
  25. Schulze, E.-D., Lange, O. L., Lembke, G.: A digital registration system for net photosynthesis and transpiration measurements in the field and an associated analysis of errors. Oecologia (Berl.) 10, 151–166 (1972b)Google Scholar
  26. Semikhatova, O. A.: The after-effect of temperature on photosynthesis. Bot. Zhur. 45, 1488–1501 (1960)Google Scholar
  27. Simonis, W.: Experimentell erzeugte Anpassungen. In: Handbuch der Pflanzenphysiologie, Bd. V/2, W. Ruhland, A. Pirson, eds., p. 269–303. Berlin-Göttingen-Heidelberg: Springer 1960Google Scholar
  28. Shomer-Ilan, A., Waisel, Y.: The effect of sodium chloride on the balance between the C3- and C4-carbon fixation pathway. Physiol. Plant. 29, 190–193 (1973)Google Scholar
  29. Sokal, R. R., Rohlf, F. J.: Biometry. San Francisco: Freeman 1969Google Scholar
  30. Strain, B. R.: Seasonal adaptations in photosynthesis and respiration in four desert shrubs growing in situ. Ecology 50, 511–513 (1969)Google Scholar
  31. Strain, B. R., Chase, V. C.: Effect of past and prevailing temperatures on the carbon dioxide exchange capacities of some woody desert perennials. Ecology 47, 1043–1045 (1966)Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • O. L. Lange
    • 1
    • 2
  • E. -D. Schulze
    • 1
    • 2
  • M. Evenari
    • 1
    • 2
    • 3
  • L. Kappen
    • 1
    • 2
  • U. Buschbom
    • 1
    • 2
  1. 1.Botanisches Institut II der Universität WürzburgWurzburgGermany
  2. 2.Avdat Farm and Desert Research Center of the Hebrew UniversityJerusalem
  3. 3.Botany DepartmentHebrew UniversityJerusalemIsrael

Personalised recommendations