Skip to main content
Log in

Salt regulation in halophytes

  • Published:
Oecologia Aims and scope Submit manuscript

Summary

Ion concentration and saturation water content were measured in various aged leaves of halophytes growing in saline soils east of lake Neusiedlersee (Austria).

All species investigated showed a substantial sodium accumulation within the maturing organs accompanied by a considerable potassium decline. In most species chloride concentration rises distinctly with increasing leaf age, too, whereas concentration shifts of alkaline earth ions and of sulfate (except in Plantago maritima, Lepidium crassifolium and Crypsis aculeata) are of comparably less importance.

Saturation water increases markedly in succulent species (Suaeda maritima, Chenopodium glaucum, Spergularia media, Lepidium crassifolium) and to a less degree in xerophytic monocotyledons (Puccinellia distans, Crypsis aculeata, Bolboschoenus maritimus). However, this surplus of water in older leaves is not sufficient to dilute the salt to such an extent that a rise in concentration can be prevented (except chloride in Suaeda maritima and Chenopodium glaucum).

Rosette plants (Triglochin maritimum, Plantago maritima, Scorzonera parviflora, Aster tripolium) with the ability to renew their leaves continuously throughout the growth period are characterized by only insignificant changes of saturation water content with increasing leaf age. In these plants, shedding of old salt-saturated leaves is thought to be the main strategy for salt regulation.

A modification of Steiner's classical concept of different “salt regulation types” is proposed, based on original findings about salt regulation in Austrian halophytes and on new bibliographical data upon additionally revealed regulatory principles in halophytes and saltaffected nonhalophytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adriani, M.J.: Halophyten. Handbuch der Pflanzenphysiologie, W. Ruhland, Hrsg., Bd. IV, S. 709–736. Berlin-Göttingen-Heidelberg: Springer 1958

    Google Scholar 

  • Albert, R.: Vergleichende Untersuchungen über den Mineralstoffwechsel der Halophyten des Neusiedlerseegebietes. Phil. Diss., Wien (1971)

  • Albert, R., Kinzel, H.: Unterscheidung von Physiotypen bei Halophyten des Neusiedlerseegebietes (österreich). Z. Pflanzenphysiol. 70, 138–157 (1973)

    Google Scholar 

  • Arnold, A.: Beiträge zur ökologischen und chemischen Analyse des Halophytenproblems. Jb. wiss. Bot. 83, 105–132 (1936)

    Google Scholar 

  • Arnold, A.: Die Bedeutung der Chlorionen für die Pflanze. Botanische Studien, W. Troll, H.v. Guttenberg, Hrsg., Heft 2. Jena: Fischer 1955

    Google Scholar 

  • Atkinson, M.R., Findlay, G.P., Hope, A.B., Pitman, M.G., Saddler, H.D.W., West, K.R.: Salt regulation in the Mangrove Rhizophora mucronata and Aegialitis annulata. Australian J. Biol. Sci. 20, 589–599 (1967)

    Google Scholar 

  • Baumeister, W., Kloos, G.: Über die Salzsekretion bei Halimione portulacoides (L.) Aellen. Flora 163, 310–326 (1974)

    Google Scholar 

  • Bernstein, L.: Osmotic adjustment of plants to saline media. I. Steady state. Am. J. Botany 48, 909–916 (1961)

    Google Scholar 

  • Bernstein, L.: Osmotic adjustment of plants to saline media. II. Dynamic phase. Am. J. Botany 50, 360–370 (1963)

    Google Scholar 

  • Biebl, R., Kinzel, H.: Blattbau und Salzgehalt von Laguncularia racemosa (L.) Gaertn. f. und anderer Mangrovebäume auf Puerto Rico. Österr. Botan. Z. 112, 56–93 (1965)

    Google Scholar 

  • Biebl, R., Weissenböck, G.: Vergleichende Untersuchungen der Salz-, Trocken- und Strahlensukkulenz bei einigen Wild- und Kulturpflanzen. Österr. Botan. Z. 115, 229–254 (1968)

    Google Scholar 

  • Binet, P.: La repartition du sodium et du potassium chez Suaeda macrocarpa Moq. Physiol. Plantarum 15, 428–436 (1962)

    Google Scholar 

  • Binet, P.: Le sodium et le potassium chez Suaeda vulgaris. Physiol. Plantarum 16, 615–622 (1963)

    Google Scholar 

  • Black, R.F.: Effect of NaCl in watercultures on the ion uptake and growth of Atriplex hastata. Australian J. Biol. Sci. 9, 65–80 (1956)

    Google Scholar 

  • Black, R.F.: Effects of sodium chloride on leaf succulence and area of Atriplex hastata L. Australian J. Botany 6, 306–321 (1958)

    Google Scholar 

  • Black, R.F.: Effects of NaCl on the ion uptake and growth of Atriplex vesicaria Heward. australian J. Biol. Sci. 13, 249–266 (1960)

    Google Scholar 

  • Bowling, D.J.F.: Active and passive ion transport in relation to transpiration in Helianthus annuus. Planta 83, 53–59 (1968)

    Google Scholar 

  • Caldwell, M.M.: Physiology of desert halophytes. Ecology of halophytes, p. 355–378. New York-London: Academic Press 1974

    Google Scholar 

  • Cooil, B.J., de la Fuente, R.K., de la Pena, R.S.: Absorption and transport of sodium and potassium in squash. Plant Physiol. 40, 625–632 (1965)

    Google Scholar 

  • Delf, E.M.: The meaning of xerophily. J. Ecology 3, 110–121 (1915)

    Google Scholar 

  • Ehrendorfer, F.: Liste der Gefäßpflanzen Mitteleuropas, 2. Auflage. Stuttgart: Fischer 1973

    Google Scholar 

  • Epstein, E.: Mineral nutrition of plants. Priciples and perspectives. New York-London-Sydney-Toronto: Wiley 1972

    Google Scholar 

  • Eshel, Y., Waisel, Y.: The salt relations of Prosopis farcta (Banks et Sol.) Eig. Israel J. Botany 14, 50–51 (1965)

    Google Scholar 

  • Evans, H.J., Sorger, G.J.: Role of mineral elements with emphasis on the univalent cations. Ann. Rev. Plant Physiol. 17, 47–76 (1966)

    Google Scholar 

  • Fischer, H.: Der Mineralstofftransport. Übersicht- Transport der Alkali- und Erdalkalimetalle. Handbuch der Pflanzenphysiologie, W. Ruhland Hrsg., Bd. 13, S. 200–268. Berlin-Göttingen-Heidelberg: Springer 1967

    Google Scholar 

  • Flowers, T.J.: Salt tolerance in Suaeda maritima (L.) Dum. J. Exp. Botany 23, 310–321 (1972a)

    Google Scholar 

  • Flowers, T.J.: The effect of sodium chloride on enzyme activity from four halophytic species of Chenopodiaceae. Phytochemistry 11, 1881–1886 (1972b)

    Google Scholar 

  • Ghobadian, A.: Salz- und Steppenböden des Seewinkels. Mitt. Oesterr. Bodenkdl. Ges. 10, (1966)

  • Greenway, H.: Plant response to saline substrates. II. Chloride, sodium and potassium uptake and translocation in young plants of Hordeum vulgare during and after a short sodium chloride treatment. Australian J. Biol. Sci. 15, 39–57 (1962)

    Google Scholar 

  • Greenway, H., Gunn, A., Pitman, M.G., Thomas, D.A.: Plant response to saline substrates. VI. Chloride, sodium and potassium uptake and distribution within the plant during ontogenesis of Hordeum vulgare. Australian J. Biol. Sci. 18, 525–540 (1965)

    Google Scholar 

  • Greenway, H., Gunn, A., Thomas, D.A.: Plant response to saline substrates. VIII. Regulation of ion concentrations in salt-sensitive and halophytic species. Australian J. Biol. Sci. 19, 733–740 (1966)

    Google Scholar 

  • Greenway, H., Osmond, C.B.: Salt responses of enzymes from species differing in salt tolerance. Plant Physiol. 49, 256–259 (1972)

    Google Scholar 

  • Greenway, H., Rogers, A.: Growth and ion uptake of Agropyron elongatum on saline substrates, as compared with a salt-tolerant variety of Hordeum vulgare. Plant Soil 18, 21–30 (1963)

    Google Scholar 

  • Greenway, H., Thomas, D.A.: Plant response to saline substrates. V. Chloride regulation in the individual organs of Hordeum vulgare during treatment with sodium chloride. Australian J. Biol. Sci. 18, 505–524 (1965)

    Google Scholar 

  • Hall, J.L., Flowers, T.J.: The effect of salt on protein synthesis in the halophyte Suaeda maritima. Planta 110, 361–368 (1973)

    Google Scholar 

  • Hannon, N.J., Barber, H.N.: The mechanism of salt tolerance in naturally selected populations of grasses. Search 3, 259–260 (1972)

    Google Scholar 

  • Horak, O., Kinzel, H.: Typen des Mineralstoffwechsels bei den höheren Pflanzen. Österr. Botan. Z. 119, 475–495 (1971)

    Google Scholar 

  • Huffaker, R.C., Wallace, A.: Sodium absorption by different plant species at different potassium levels. Soil Sci. 87, 130–134 (1959a)

    Google Scholar 

  • Huffaker, R.C., Wallace, A.: Effect of potassium and sodium levels on sodium distribution in some plant species. Soil Sci. 88, 80–82 (1959b)

    Google Scholar 

  • Iljin, W.S.: Anpassung der Halophyten an konzentrierte Salzlösungen. Planta 16, 352–366 (1932)

    Google Scholar 

  • Jacoby, B.: Function of bean roots and stems in sodium retention. Plant Physiol. 39, 445–449 (1964)

    Google Scholar 

  • Jacoby, B.: Sodium retention in excised bean stems. Physiol. Plantarum 18, 730–739 (1965)

    Google Scholar 

  • Jefferies, R.L.: The ionic relations of seedlings of the halophyte Triglochin maritimum L. Ion transport by plants, (W.P. Anderson ed.), p. 297–321. London-New York: Academic Press 1972

    Google Scholar 

  • Jennings, D.H.: Halophytes, succulence and sodium in plants—a unified theory. New Phytologist 67, 899–911 (1968)

    Google Scholar 

  • Keller, B.: Die Vegetation auf den Salzböden der russischen Halbwüsten und Wüsten. Z. Botan. 18, 113–137 (1925)

    Google Scholar 

  • Kinzel, H.: Zellsaft-Analysen zum pflanzlichen Calcium- und Säurestoffwechsel und zum Problem der Kalk- und Silikatpflanzen. Protoplasma 57, 522–555 (1963)

    Google Scholar 

  • Kinzel, H., Bergauer, P., Weissenböck, G.: Zur Methodik der flammenphotometrischen Bestimmung von Calcium und Magnesium in Pflanzenteilen. Z. Pflanzenphysiol. 57, 209–222 (1967)

    Google Scholar 

  • Kramer, D., Läuchli, A., Meister, J.: Xylem parenchyma in bean stems: Ultrastructure in relation to ion translocation. International Association of Plant Physiology (IAPP) Abstracts. First meeting in Würzburg (1974)

  • Kreeb, K.: Pflanzen an Salzstandorten. Naturwissenschaften 61, 337–343 (1974)

    Google Scholar 

  • Kylin, A.: Adenosine triphosphatases stimulated by (sodium + potassium): Biochemistry and possible significane for salt resistance. Ion transport by plants, (W. P. Anderson, ed.), p. 369–377. London-New York: Academic Press 1972

    Google Scholar 

  • LaHaye, P.A., Epstein, E.: Salt toleration by plants: enhancement with calcium. Science 166, 395–396 (1969)

    Google Scholar 

  • Läuchli, A., Kramer, D.: Regulation of the ion transport in soybean mutants differing in salt tolerance. International Association of Plant Physiology (IAPP) Abstracts. First meeting in Würzburg (1974)

  • Levitt, J.: Responses of plants to environmental stresses. New York-London: Academic Press 1972

    Google Scholar 

  • Lew, H.: Vergleichende physiologische Untersuchungen an oxalathaltigen Pflanzen. “Dissertationen der Universität Wien”, Bd. 109. Wien: Verband der wissenschaftlichen Gesellschaften Österreichs (Verlag) 1974

    Google Scholar 

  • Loneragan, J.F., Snowball, K.: Calcium requirement of plants. Australian J. Agri. Res. 20, 465–478 (1969a)

    Google Scholar 

  • Loneragan, J.F., Snowball, K.: Rate of calcium absorption by plant roots and its relation to growth. Australian J. Agri. Res. 20, 479–490 (1969b)

    Google Scholar 

  • Lundegardh, H.: Mechanisms of absorption, transport, accumulation, and secretion of ions. Ann. Rev. Plant Physiol. 6, 1–24 (1955)

    Google Scholar 

  • Lunt, O.R., Younger, V.B., Oertli, J.J.: Salinity tolerance of five turf grass varieties. Agronomy J. 53, 247–249 (1961)

    Google Scholar 

  • Mozafar, A., Goodin, J.R.: Vesiculated hairs: a mechanism for salt tolerance in Atriplex halimus. Plant Physiol. 45, 62–65 (1970)

    Google Scholar 

  • Nissen, P.: Kinetics of ion uptake in higher plants. Physiol. Plantarum 28, 113–120 (1973)

    Google Scholar 

  • Norberg, P., Hofsten, B.V.: Chromatography of a halophilic enzyme on hydroxylapatit in 3.4 M sodium chloride. Biochim. Biophys. Acta 220, 132–133 (1970)

    Google Scholar 

  • Önal, M.: Beiträge zum Halophytenproblem. Ber. Deut. Botan. Ges. 78, 68–72 (1965)

    Google Scholar 

  • Önal, M.: Der Einfluß steigender Natrium- und Kaliumchloridkonzentrationen auf den Sukkulenzgrad bei einigen Halophyten. Rev. Fac. Sci. Univ. Istanbul, Serie B, 34, 327–337 (1969)

    Google Scholar 

  • Osmond, C.B., Greenway, H.: Salt responses of carboxylation enzymes from species differing in salt tolerance. Plant Physiol. 49, 260–263 (1972)

    Google Scholar 

  • Osmond, C.B., Lüttge, U., West, K.R., Pallaghy, C.K., Shacher-Hill, B.: Ion absorption in Atriplex leaf tissue. II. Secretion of ions to epidermal bladders. Australian J. Biol. Sci. 22, 797–814 (1969)

    Google Scholar 

  • Pallaghy, C.K.: Salt relations of Atriplex leaves. The biology of Atriplex, R. Jones ed., p. 57–61. Canberra: CSIRO 1970

    Google Scholar 

  • Pompe, E.: Beiträge zur Ökologie der Hiddenseer Halophyten. Beih. Bot. Zbl. A 60, 223–326 (1940)

    Google Scholar 

  • Prisco, J.T., O'Leary, J.W.: Enhancement of intact bean leaf senescence by NaCl salinity. Physiol. Plantarum 27, 95–100 (1972)

    Google Scholar 

  • Rains, D.W.: Salt transport by plants in relation to salinity. Ann. Rev. Plant Physiol. 23, 367–388 (1972)

    Google Scholar 

  • Rains, D.W., Epstein, E.: Preferential absorption of potassium by leaf tissue of the Mangrove Avicennia marina: an aspect of halophytic competence in coping with salt. Australian J. Biol. Sci. 20, 847–857 (1967)

    Google Scholar 

  • Repp, G.: Ökologische Untersuchungen im Halophytengebiet am Neusiedlersee. Jb. Wiss. Bot. 88, 554–632 (1939)

    Google Scholar 

  • Repp, G.: Die Salztoleranz der Pflanzen. I. Salzhaushalt und Salzresistenz von Marschpflanzen der Nordseeküste Dänemarks in Beziehung zum Standort. Österr. Botan. Z. 104, 454–490 (1958)

    Google Scholar 

  • Repp, G.I., McAllister, D.R., Wiebe, H.H.: Salt resistance of protoplasm as a test for the salt tolerance of agricultural plants. Agron. J. 51, 311–314 (1959)

    Google Scholar 

  • Scholander, P.F.: How Mangroves desalinate seawater. Physiol. Plantarum 21, 251–261 (1968)

    Google Scholar 

  • Scholander, P.F., Hammel, H.T., Hemmingsen, E., Garey, W.: Salt balance in Mangroves. Plant Physiol. 37, 722–729 (1962)

    Google Scholar 

  • Schratz, E.: Beiträge zur Biologie der Halophyten. III. Über Verteilung, Ausbildung und NaCl-Gehalt der Strandpflanzen und ihre Abhängigkeit vom Salzgehalt des Standortes. Jb. Wiss. Bot. 83, 133–189 (1936)

    Google Scholar 

  • Schratz, E.: Beiträge zur Biologie der Halophyten. IV. Die Transpiration der Strand- und Dünenpflanzen. Jb. Wiss. Bot. 84, 593–638 (1937)

    Google Scholar 

  • Solovyov, V.A.: Pathways of regulation of surplus absorbed ions in plant tissues (with sodium ions as an example). Fiziologija Rastenij 14, 1093–1103 (1967)

    Google Scholar 

  • Steiner, M.: Zur Ökologie der Salzmarschen der nordöstlichen Vereinigten Staaten von Nordamerika. Jb. Wiss. Bot. 81, 94–202 (1934)

    Google Scholar 

  • Steiner, M.: Die Zusammensetzung des Zellsaftes bei höheren Pflanzen in ihrer ökologischen Bedeutung. Ergeb. Biol. 17, 151–254 (1939)

    Google Scholar 

  • Stocker, O.: Salzpflanzen. Handwörterb. Naturwiss., Bd. 8, S. 699–713. Jena: Fischer 1933

    Google Scholar 

  • Stocker, O.: Der Wasser- und Photosynthesehaushalt mitteleuropäischer Gräser, ein beitrag zum allgemeinen Konstitutionsproblem des Grastypus. Flora, Abt. B, 157, 56–96 (1967)

    Google Scholar 

  • Strogonov, B.P.: Physiological basis of salt tolerance of plants (as affected by various types of salinity) (translated from Russian). Jerusalem: Israel Program for Scientific Translations 1964

    Google Scholar 

  • Waisel, Y.: Biology of halophytes. New York-London: Academic Press 1972

    Google Scholar 

  • Waisel, Y., Eshel, A.: Localization of ions in the mesophyll cells of the succulent halophyte Suaeda monoica Forssk. by X-ray microanalysis. Experientia 27, 230–232 (1971)

    Google Scholar 

  • Waisel, Y., Neumann, R., Kuller, Z.: Selectivity and ion transport in excised bean hypocotyls. Physiol. Plantarum 23, 955–963 (1970)

    Google Scholar 

  • Walsh, G.E.: Mangroves: a review. Ecology of halophytes, p. 51–174. New York-London: Academic Press 1974

    Google Scholar 

  • Walter, H.: Die Vegetation der Erde in öko-physiologischer Betrachtung. Band II. Die gemäßigten und arktischen Zonen. Stuttgart: Fischer 1968

    Google Scholar 

  • Walter, H.: Die Vegetation der Erde in öko-physiologischer Betrachtung. Band I. Die tropischen und subtropischen Zonen, 3. Auflage. Stuttgart: Fischer 1973

    Google Scholar 

  • Walter, H., Kreeb, K.: Die Hydratation und Hydratur des Protoplasmas der Pflanzen und ihre öko-physiologische Bedeutung. Protoplasmatologia, Bd. II C 6. Wien-New York: Springer 1970

    Google Scholar 

  • Walter, H., Steiner, M.: Die Ökologie der Ost-Afrikanischen Mangroven. Z. Botan. 30, 65–193 (1936)

    Google Scholar 

  • Weissenböck, G.: Einfluß des Bodensalzgehaltes auf Morphologie und Ionenspeicherung von Halophyten. Flora, Abt. B, 158, 369–389 (1969)

    Google Scholar 

  • Willert, D.J.v.: Tagesschwankungen des Ionengehaltes in Salicornia europaea in Abhängigkeit vom Standort und von der Überflutung. Ber. Deut. Botan. Ges. 81, 442–449 (1968)

    Google Scholar 

  • Ziegler, H., Lüttge, U.: Die Salzdrüsen von Limonium vulgare. I. Mitteilung: Die Feinstruktur. Planta (Berl.) 70, 193–206 (1966)

    Google Scholar 

  • Ziegler, H., Lüttge, U.: Die Salzdrüsen von Limonium vulgare. II. Mitteilung: Die Lokalisierung des Chlorids. Planta (Berl.) 74, 1–17 (1967)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Respectfully and thankfully dedicated to Prof. Dr. H. Kinzel on the occasion of his 50th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albert, R. Salt regulation in halophytes. Oecologia 21, 57–71 (1975). https://doi.org/10.1007/BF00345893

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00345893

Keywords

Navigation