Skip to main content
Log in

The fine structure of the mandibular sensory receptors in the brackish water calanoid copepod Gladioferens pectinatus (Brady)

  • Published:
Zeitschrift für Zellforschung und Mikroskopische Anatomie Aims and scope Submit manuscript

Summary

Two types of sensory neurones are located in the mandibles, antennae, labrum, labium and maxillipeds of the brackish water calanoid copepod Gladioferens pectinatus: a ciliary type and a nonciliary type. These occur either separately in different sensilla or sometimes both are present in the same sensillum. These sensilla appear to be similar to the mechanoreceptors and chemoreceptors found in insects. The structure of the sensilla is described here and they are briefly compared with the sensory receptors of other arthropods. It is suggested that the sensilla in the mandibles and the labrum aid the animal in selective filter feeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barnes, B. G.: Ciliated secretory cells in the pars distalis of the mouse hypophysis. J. Ultrastruct. Res. 5, 453–467 (1961).

    Google Scholar 

  • Bayly, I. A. E.: Ecological studies on the planktonic copepods of the Brisbane River estuary with special reference to Gladioferens pectinatus (Brady) (Calanoida). Aust. J. Mar. F. W. Res. 16 (3), 315–350 (1965).

    Google Scholar 

  • Bullock, T. H., and G. A. Horridge: Structure and function in the nervous systems of invertebrates. San Francisco and London: Freeman & Co 1965.

    Google Scholar 

  • Case, J., G. F. Gwilliam, and F. Hanson: Dactyl chemoreceptors of brachyurans. Biol. Bull., Woods Hole 119, 308 (1960).

    Google Scholar 

  • Cushing, D. H.: On the nature of the production in the sea. Fishery Invest. (Lond.), Ser. II, 22, 1–40 (1959).

    Google Scholar 

  • Dethier, V. G.: The physiology and histology of the contact chemoreceptors of the blowfly. Quart. Rev. Biol. 30, 348–371 (1955).

    Google Scholar 

  • Esterly, C. O.: The feeding habits and food of the pelagic copepods and the question of nutrition by organic substances in solution in the water. Univ. Calif. Publ. Zool. 16, 171–184 (1916).

    Google Scholar 

  • Gray, E. G.: The fine structure of the insect ear. Phil. Trans. B 243, 75–94 (1960).

    Google Scholar 

  • Hamilton, D. W.: The calyceal synapse of the Type 1 vestibular hair cells. J. Ultrastruct. Res. 23, 98–114 (1968).

    Google Scholar 

  • Hodgson, E. S.: Chemoreception in arthropods. Ann. Rev. Entw. 3, 19–36 (1958).

    Google Scholar 

  • —: Chemoreception. In: The physiology of insecta, vol. 1, p. 363–396 (ed. M. Rockstein). New York and London: Academic Press 1964.

    Google Scholar 

  • Krishnaswamy, S., J. E. G. Raymont, M. A. Woodhouse, and R. L. Griffin: Studies on the fine structure of copepoda. Observations on the fine structure of the buttons on the setae of the maxillae and maxilliped of Centraugaptilus horridus. Deep-Sea Res. 14 (3), 331–335 (1967).

    Google Scholar 

  • Laverack, M. S.: Responses of the cuticular sense organs of the lobster, Homarus vulgaris (Crustacea). I. Hair-peg organs as water current receptors. Comp. Biochem. Physiol. 5, 319–325 (1962a).

    Google Scholar 

  • —: Responses of the cuticular sense organs of the lobster, Homarus vulgaris. II. Hair-fan organs as pressure receptors. Comp. Biochem. Physiol. 6, 137–145 (1962b).

    Google Scholar 

  • Ledbetter, M. C., and K. R. Porter: A “microtubule” in plant cell fine structure. J. Cell Biol. 19, 239–250 (1963).

    Google Scholar 

  • —: Morphology of the microtubules of plant cells. Science 144, 872–874 (1964).

    Google Scholar 

  • Lillibridge, C. B.: Electron microscopic measurements of the thickness of various membranes in oxyntic cells from frog stomachs. J. Ultrastruct. Res. 23, 243–259 (1968).

    Google Scholar 

  • Lowe, E.: On the anatomy of a marine copepod, Calanus finmarchicus (Gunnerus). Trans. roy. Soc. Edinb. 58, Pt. III (No 23), 561–603 (1935–1936).

    Google Scholar 

  • Lowndes, A. G.: The swimming and feeding of certain calanoid copepods. Proc. Zool. Soc. Lond., Pt. III, 687–715 and 2 plates (1935).

  • Marshall, S. M., and A. P. Orr: The biology of a marine copepod. 188 pp. Edinburgh: Oliver & Boyd. 1955.

    Google Scholar 

  • Moulins, M.: Les sensilles de l'organe hypopharyngien de Blabera craniifer Burm. (Insecta, Dictyoptera). J. Ultrastruct. Res. 21, 474–513 (1968).

    Google Scholar 

  • Mullin, M. M., and E. R. Brooks: Laboratory culture, growth rate and feeding behaviour of a planktonic copepod. Limnol. Oceanogr. 12 (4), 657–666 (1967).

    Google Scholar 

  • Ong, J. E.: A general survey of primary productivity and the spatial and temporal distribution of the zooplankton of the surface waters of the Derwent River estuary. B. Sc. (Hons.) Thesis, University of Tasmania, 1967.

  • Peachy, L. D.: Electron microscopic observations on the accumulation of divalent cations in intramitochondrial granules. J. Cell Biol. 20, 95–111 (1964).

    Google Scholar 

  • Philpott, C. E., and D. W. Copeland: Fine structure of chloride cells from three species of Fundulus. J. Cell Biol. 18 (2), 389–404 (1963).

    Google Scholar 

  • Rouiller, Ch.: Physiological and pathological changes in mitochondrial morphology. Int. Rev. Cytol. 9, 227–292 (1960).

    Google Scholar 

  • Schone, H., and R. A. Steinbrecht: The fine structure of the statocyst receptor of Astacus fluviatilis. Nature (Lond.) 220 (5163), 184–186 (1968).

    Google Scholar 

  • Slifer, E. H.: The permeability of the sensory pegs on the antennae of the grasshopper (Othoptera; Acrididae). Biol. Bull., Woods Hole 106, 122–128 (1954).

    Google Scholar 

  • —: The detection of odours and water vapor by grasshoppers (Othoptera, Acrididae) and some new evidence concerning the sense organs which may be involved. J. expt. Zool. 130, 301–317 (1955).

    Google Scholar 

  • —: The fine structure of insect sense organs. Int. Rev. Cytol. 11, 125–159 (1961).

    Google Scholar 

  • —, J. J. Prestage, and H. W. Beams: The fine structure of the long basiconic sensory pegs of the grasshopper (Othoptera, Acrididae) with special reference to those of the antenna. J. Morph. 101, 539–574 (1957).

    Google Scholar 

  • —: The chemoreceptors and other sense organs on the antennal flagellum of the grasshopper (Othoptera, Acrididae). J. Morph. 105, 145–191 (1959).

    Google Scholar 

  • Thomson, J. M., and D. J. Dunstan: A selective effect of deoxygenation upon copepods in a coastal lagoon. Crustaceana. Suppl. 1, Studies on Copepoda, 82–86 (1968).

    Google Scholar 

  • Whitear, M.: The fine structure of the crustacean proprioreceptors. I. The chordotonal organs in the legs of the shore crab Carcinus maenas. Phil. Trans. B 245, 291–325 and plates 56–62 (1962).

    Google Scholar 

  • Yonge, C. M.: On the nature and permeability of chitin. I. The chitin lining the foregut of decapod crustacea and the function of the tegumental glands. Proc. roy. Soc. B 111, 298–328 (1932).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The author is indebted to Prof. B. Johnson for the generous use of this laboratory and equipment, Prof. B. Johnson and Dr. P. S. Lake for reading the manuscript, Mr. B. R. Dixon for skilled technical assistance and Miss B. J. Owens for secretarial help. The project was supported by a University of Tasmania Research Grant and the author is the holder of a University of Tasmania Research Scholarship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ong, J.E. The fine structure of the mandibular sensory receptors in the brackish water calanoid copepod Gladioferens pectinatus (Brady). Z. Zellforsch. 97, 178–195 (1969). https://doi.org/10.1007/BF00344756

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00344756

Keywords

Navigation