, Volume 22, Issue 2, pp 135–152 | Cite as

The respiratory metabolism of selected lumbricidae

  • J. Phillipson
  • P. J. Bolton


Open-system infra red gas analysis was used to measure the CO2 output throughout a year of four species of earthworm. The respiratory quotients (R.Q.s) of the four species were determined by means of a Warburg apparatus and it was found that they varied with season. In some instances R.Q.s did not fall within the expected range of 0.7 to 1.0 and the low values were attributed to calciferous gland activity and the fixation of metabolic CO2.

The results from CO2 output measurements at 10°C and R.Q.s were used to calculate oxygen uptake, this varied seasonally but the mean annual values at 10°C for adult, large immature and small immature A. rosea were 64.17, 72.66 and 78.56 μl O2 g-1 fresh wt h-1 respectively. Mixed size groups of L. castaneus had a mean annual oxygen consumption at 10°C of 155.83 μl O2 g-1 fresh wt h-1 and equivalent values for D. rubida and O. cyaneum were 112.02 and 69.35 μl O2 g-1 fresh wt h-1. The apparent relationship between a high respiratory rate per unit weight and a litter dwelling habit (e.g. L. castaneus and D. rubida) disappeared when allowance was made for the weight of gut contents. Mean annual values for oxygen uptake in μl O2 g-1 gut free fresh wt h-1 at 10°C were L. castaneus (194.79), D. rubida (142.22), A. rosea (95.70) and O. cyaneum (139.28). No size specific metabolism could be demonstrated either within or between species, this is believed to be correlated with the different levels of activity shown by different species and their life stages.

Rates of oxygen consumption per unit weight for A. rosea were shown to be proportional to ambient temperature. Q10 slopes of this relation, between 6 and 15°C, were higher for large immature A. rosea (2.42) and small immatures (1.96) than for adult clitellate worms (1.42). The mean Q10 relationship for all size classes of A. rosea was 1.93 over the same temperature range and the equivalent value for cocoons was 1.63. The relationship between the oxygen consumption rate of all size classes of A. rosea and ambient temperature was not significantly affected by acclimatisation at 5 and 10° C prior to measurements being made at 6, 10 and 15° C.


Oxygen Consumption Size Classis Oxygen Uptake Unit Weight Oxygen Consumption Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agrell, I.: Some experiments concerning thermal adjustment and metabolism in insects. Arkiv. Zoo. 39, 1–48 (1947)Google Scholar
  2. Alsterburg, G.: Die respiratorischen Mechanismen der Tubificiden. Lunds Univ. Arsskr., N.F., Avd. 2, Bd. 18 (k. fysiog. sälls. Handlingar N.F. 33) (1922)Google Scholar
  3. Arthur, D. R.: Form and function in the interpretation of feeding in lumbricid worms. In: Viewpoints in biology, vol. 4, p. 204–251. London: Butterworths 1965Google Scholar
  4. Barley, K. P., Jennings, A. C.: Earthworms and soil fertility. III. The influence of earthworms on the availability of nitrogen. Aust. J. Agric. Res. 10, 364–370 (1959)Google Scholar
  5. Bolton, P. J.: The use of an infra-red gas analyser for studies on the respiratory metabolism of Lumbricidae. In: Methods of study in soil ecology (J. Phillipson, ed.), p. 269–274. Paris: Unesco 1970Google Scholar
  6. Boynton, D., Compton, O. C.: Normal seasonal changes of oxygen and carbon dioxide percentages in gas from the larger pores of three orchard soils. Soil Sci. 57, 107–117 (1944)Google Scholar
  7. Byzova, J. A.: Comparative rate of respiration in some earthworms (Lumbricidae, Oligochaeta). Rev. Ecol. Biol. Sol. 2, 207–216 (1965)Google Scholar
  8. Byzova, J. A.: On the effect of oxygen tension upon the respiration rate in earthworms (Lumbricidae, Oligochaeta). Rev. Ecol. Biol. Sol. 3, 273–276 (1966)Google Scholar
  9. Clark, A. M.: The distribution of carbonic anhydrase in the earthworm and the snail. Aust. J. Sci. 19, 205–207 (1957)Google Scholar
  10. Davis, J. G., Slater, W. K.: The anaerobic metabolism of the earthworm (Lumbricus terrestris). Biochem. J. 22, 338–343 (1928)Google Scholar
  11. Doeksen, J., Couperus, H.: Het vaststellen van groei bij regenwormen. Jaarboek I.B.S. 195, 173–175 (1962)Google Scholar
  12. Dotterweich, H.: Die Funktion tierischer Kalkablagerungen als Pufferreserve im Dienste der Reaktionsregulation. Die Kalkdrüsen des Regenwurms. Pflügers Arch. ges Physiol. 232, 263–286 (1933)Google Scholar
  13. Evans, A. C., Guild, W. J. McL.: Studies on the relationship between earthworms and soil fertility. V. Field populations. Ann. appl. Biol. 35, 485–493 (1948)Google Scholar
  14. Gromadska, M.: Changes in the respiratory metabolism of Lumbricus castaneus (Sav.) under the influence of various constant and alternating temperatures [in Polish]. Studia Soc. Sci. Torun., Sect. E, 6, 179–189 (1962)Google Scholar
  15. Itô, Y.: Preliminary stidies on the respiratory energy loss of a spider, Lycosa pseudoannulata. Res. Popul. Ecol. 6, 13–21 (1964)Google Scholar
  16. Johnson, M. L.: The respiratory function of the haemoglobin of the earthworm. J. exp. Biol. 18, 266–277 (1942)Google Scholar
  17. King, J. T.: Determination of the basal metabolism from the carbon-dioxide elimination. Johns Hopk. Hosp. Bull. 32, 277–289 (1921)Google Scholar
  18. Kirberger, C.: Metabolic adaptations to temperature earthworms,. Z. vergl. Physiol. 35, 175–198 (1953)Google Scholar
  19. Knoz, J.: Concerning the effect of a short-term action of temperature on the oxygen consumption of several Oligochaetae. Vest. Cesk. Spot. Zool. 21, 203–208 (1957)Google Scholar
  20. Konopacki, M. M.: Über den Atmungsprozess bei Regenwürmern. Bull. int. Acad. Cracovie, Ser. B (1907).Google Scholar
  21. Krogh, A.: The quantitative relation between temperature and standard metabolism in animals. Int. Z. phys.-chem. Biol. 1, 491–508 (1914)Google Scholar
  22. Krogh, A.: The respiratory exchange in man and animals. London: Longmans Green 1916Google Scholar
  23. Krogh, A.: Comparative physiology of respiratory mechanisms. Philadelphia: University of Pennsylvania Press 1941Google Scholar
  24. Krüger, F.: Über die Beziehung des Sauerstoffverbrauchs zum Gewicht bei Eisenia foetida (Sav.) (Annelides Oligochaeta). Z. vergl. Physiol. 34, 1–5 (1952)Google Scholar
  25. Martin, M. H., Pigott, C. D.: A simple method for measuring carbon dioxide in soils. J. Ecol. 53, 153–155 (1965)Google Scholar
  26. Mendes, E. G., Almeida, A. M.: The respiratory metabolims of tropical earthworms. III. The influence of oxygen tension and temperature. Bol. Fac. Filos. Ciênc e Letras, Univ. Sao Paulo, Ser. Zool. 24, 43–65 (1962)Google Scholar
  27. Petrusewicz, K., Macfadyen, A.: Productivity of terrestrial animals. I.B.P. Handbook No. 13, 190 pp. Oxford: Blackwell 1970Google Scholar
  28. Phillipson, J.: Respirometry and the study of energy transfer in natural systems, with particular reference to harvest spiders (Phalangiidae). Oikos 13, 311–322 (1962)Google Scholar
  29. Phillipson, J.: The use of respirometry data in estimating annual respiratory metabolism with particular reference to Leiobunum rotundum (Latr.) (Phalangiidae). Oikos 14, 212–223 (1963)Google Scholar
  30. Phillipson, J., Watson, J.: Respiratory metabolism of the terrestrial isopod Oniscus asellus L. Oikos 16, 78–87 (1965)Google Scholar
  31. Piearce, T. G.: The calcium relations of selected Lumbricidae. J. anim. Ecol. 41, 167–188 (1972)Google Scholar
  32. Pomerat, C. M., Zarrow, M. X.: The effect of temperature on the respiration of the earthworm. Proc. nat. Acad. Sci. (Wash.) 22, 270–272 (1936)Google Scholar
  33. Rabinowitch, I. M., Bazin, E. V.: A simple and accurate method of determining basal metabolic rates. J. Canad. Med. Assn. 16, 638–646 (1926)Google Scholar
  34. Raffy, A.: La respiration de vers de terre dans l'eau. Action de la teneur en oxygène et de la lumière sur l'intensité de la respiration pendant l'immersion. C. R. Séand. Soc. Biol. 105, 862–864 (1930)Google Scholar
  35. Ralph, C. L.: Persistent rhythms and oxygen consumption in the earthworm. Physiol. Zool. 30, 41–44 (1957)Google Scholar
  36. Robertson, J. D.: The function of the calciferous glands of earthworms. J. exp. Biol. 13, 279–297 (1936)Google Scholar
  37. Russell, E. J.: Soil conditions and plant growth, 9th ed. London: Longmans 1961Google Scholar
  38. Saroja, K.: Studies on the O2 consumption in tropical Poikilotherms. 2. Oxygen consumption in relation to body size and temperature in the earthworm Megascolex mauritii when kept submerged in water. Pro. Ind. Acad. Sci. (B) 49, 183–193 (1959)Google Scholar
  39. Saroja, K.: Oxygen consumption of the worm Octochaetona serrata as a function of size and temperature in aquatic and aerial media. Comp. biochem. physiol. 12, 47–54 (1964)Google Scholar
  40. Satchell, J. E.: Lumbricidae. In: Soil biology (A. Burges, F. Raw, eds.), p. 259–322. London: Academic Press 1967Google Scholar
  41. Voigt, O.: Die Funktion der Regenwurm-Kalkdrüsen. Zool. Jahrb. Abt. Allgem. Zool. Physiol. Tiere 52, 677–708 (1933)Google Scholar
  42. Zeuthen, E.: Body-size and metabolic rate in the animal kingdom. C. R. Trav. Lab. Carlsberg, Ser. Chim. 26, 17–161 (1947)Google Scholar
  43. Zeuthen, E.: Oxygen uptake as related to body size in organisms. Quart. Rev. Biol. 28, 1–12 (1953)Google Scholar
  44. Zeuthen, E.: Comparative physiology of respiration. Ann. Rev. Physiol. 17, 459–482 (1955)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • J. Phillipson
    • 1
  • P. J. Bolton
    • 1
  1. 1.Animal Ecology Research Group, Zoology DepartmentOxford UniversityOxfordUK

Personalised recommendations