Skip to main content
Log in

Studies on the fine structure of teleost blood cells

II. Microtubular elements of erythrocyte marginal bands

  • Published:
Zeitschrift für Zellforschung und Mikroskopische Anatomie Aims and scope Submit manuscript

Summary

Electron microscopic study of nucleated erythrocytes of the goldfish, Carassius auratus, reveals the microtubular elements comprising the marginal band which encircles the cell. Six to ten units are visible at each pole of the cell, immediately within the plasmalemma. Each tubular unit is composed of an electron dense membrane enclosing a less dense core. Cross-sectional units average 264 Å outer diameter, whereas tubules measured in longitudinal sections average 237 Å.

The functions of the microtubules of the marginal bands are analyzed in view of Meves' original interpretation of maintenance of the discoidal form of the nucleated erythrocyte, and the more recent investigations in cell physiology of Trotter and Tilney. It is proposed that the microtubules possess a dual function: the support of the cell which is attributed to the hydroelastic properties of the turgid microtubules resulting from intratubular hydrostatic pressures; and the intracellular transport of materials via the intratubular fluid. The microtubules may, therefore, be considered as a skeletal system and part of an intracellular circulatory system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Capone, R. J., E. L. Weinreb, and G. B. Chapman: Electron microscopic studies on normal human myeloid elements. Blood 23, 300–320 (1964).

    Google Scholar 

  • Fawcett, D. W.: Electron microscopic observations on the marginal bands of nucleated erythrocytes. Anat. Rec. 133, 379 (1959).

    Google Scholar 

  • —: Physiologically significant specializations of the cell surface. Circulation 26, 1105–1125 (1962).

    Google Scholar 

  • —, and F. Witebsky: Observations on the ultrastructure of nucleated erythrocytes and thrombocytes, with special reference to the structural basis of their discoidal shape. Z. Zellforsch. 62, 785–804 (1964).

    Google Scholar 

  • Luft, J. H.: Improvements in epoxy resin embedding methods. J. biophys. biochem. Cytol. 9, 409–414 (1961).

    Google Scholar 

  • Maser, M. D.: Cytoskeletal elements in vertebrate nucleated erythrocytes. J. Cell Biol. 19, 47 A-48 A (1963).

    Google Scholar 

  • —, and C. W. Philpott: Fine structure of marginal band microtubules in Fundulus erythrocytes. J. Cell Biol. 23, 56 A-57 A (1964a).

    Google Scholar 

  • —: Marginal bands in nucleated erythrocytes. Anat. Rec. 150, 365–382 (1964b).

    Google Scholar 

  • Meves, Fr.: Die Hünefeld-Hensenschen Bilder der roten Blutkörperchen der Amphibien. Anat. Anz. 24, 465–476 (1904).

    Google Scholar 

  • —: Gesammelte Studien an den roten Blutkörperchen der Amphibien. Arch. mikr. Anat. 77, 465–540 (1911).

    Google Scholar 

  • Michaelis, L.: Der Acetat-Veronal Puffer. Biochem. Z. 234, 139–141 (1931).

    Google Scholar 

  • Palade, G. E.: A study of fixation for electron microscopy. J. exp. Med. 95, 285–298 (1952).

    Google Scholar 

  • Ranvier, L.: Recherches sur les éléments du sang. Arch. de Phys. ann. 7 (1875). (Cited by Meves, 1911.)

  • Sager, R., and G. E. Palade: Structure and development of the chloroplast in Chlamydomonas. I. The normal green cell. J. biophys. biochem. Cytol. 3, 463–487 (1957).

    Google Scholar 

  • Sandborn, E., and P. Bois: Cytoplasmic microtubules in normal and tumor cells of the rat. Proc. Electron Micr. Soc. of Amer. Abstr. B-33, p. 12 (1964).

    Google Scholar 

  • Tilney, L. G.: Microtubules in the asymmetric arms of Actinosphaerium and their response to cold, colchicine, and hydrostatic pressure. Anat. Rec. 151, 426 (1965).

    Google Scholar 

  • Trotter, W. D.: Banding in salamander erythrocytes. Exp. Cell Res. 11, 587–603 (1956).

    Google Scholar 

  • Watson, M. L.: Staining of tissue sections for electron microscopy with heavy metals. J. biophys. biochem. Cytol. 4, 475–478 (1958).

    Google Scholar 

  • Weinreb, E. L.: Studies on the ultrastructure of teleost blood cells. Amer. Zoologist 2, 567–568 (1962).

    Google Scholar 

  • —: Electron microscope studies on teleost blood cells under normal and experimental conditions. Anat. Rec. 145, 369 (1963a).

    Google Scholar 

  • —: Studies on the fine structure of teleost blood cells. I. Peripheral blood cells. Anat. Rec. 147, 219–238 (1963b).

    Google Scholar 

  • —, and S. Weinreb: Effects of induced phagocytic activity on the fine structure of teleost blood cells. Anat. Rec. 151, 432 (1965).

    Google Scholar 

  • Weiss, P.: The dynamics of the membrane-bound incompressible body: A mechanism of cellular and subcellular motility. Proc. Nat. Acad. Sci. (Wash.) 52, 1024–1029 (1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This project was supported by grants 2 G-895 and 2 G-505 from the United States Public Health Service.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weinreb, E.L., Weinreb, S. Studies on the fine structure of teleost blood cells. Zeitschrift für Zellforschung 68, 830–836 (1965). https://doi.org/10.1007/BF00343934

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00343934

Keywords

Navigation