Skip to main content
Log in

Functional substitution of the recE gene of Bacillus subtilis by the recA gene of Proteus mirabilis

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

Rec mutants of Bacillus subtilis have been tested for complementation by the recA gene of Proteus mirabilis (recApm) which was introduced into B. subtilis via the plasmid pHP334. In the recE4 mutant of B. subtilis the plasmid pHP334 restored significantly the defects in RecE functions tested: UV-sensitivity, homologous recombination (transduction and transformation) and prophage induction.

Although serological methods to detect the presence of RecApm protein in B. subtilis have been unsuccessful, our results strongly indicate that the recE function of B. subtilis is analogous to the recA function of P. mirabilis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Cmr :

resistance to chloramphenicol

Emr :

resistance to erythromycin

Tcr :

resistance to tetracycline

SDS:

sodium dodecyl sulfate

UV:

ultraviolet

AS:

ammonium sulfate

References

  • Agnostopoulos C, Spizizen J (1961) Requirements for transformation in Bacillus subtilis. J Bacteriol 81:741–746

    Google Scholar 

  • Belyaeva NN, Azizbekyan RR (1968) Fine structure of new Bacillus subtilis phage AR9 with complex morphology. Virology 34:176–179

    Google Scholar 

  • Birdsell DC, Hathaway GM, Rutberg L (1969) Characterization of temperature Bacillus bacteriophage ϕ105. J Virology 4:264–270

    Google Scholar 

  • Birnboim HC, Doly J (1979) A rapid alkaline extraction procedure for screening of recombinant plasmid DNA. Nucl Acids Res 7:1513–1523

    Google Scholar 

  • Boyer HW, Roulland-Dussoix D (1969) A complementation analysis of the restriction and modification of DNA in Escherichia coli. J Mol Biol 41:459–472

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analyt Biochem 72:248–254

    Google Scholar 

  • Cohen SN, Chang ACY, Hsu L (1972) Nonchromosomal antibiotic resistance in bacteria: Genetic transformation of Escherichia coli by R-factor DNA. Proc Natl Acad Sci USA 69:2110–2114

    Google Scholar 

  • Dodson AL, Hadden CT (1980) Capacity for postreplication repair correlated with transducibility in rec mutants of Bacillus subtilis. J Bacteriol 144:608–615

    Google Scholar 

  • Dubnau D, Davidoff-Abelson R (1971) Fate of transforming DNA following uptake by competent Bacillus subtilis. I. Formation and properties of the donor-recipient-complex. J Mol Biol 56:209–221

    Google Scholar 

  • Dubnau D, Davidoff-Abelson R, Scher B, Cirigliano C (1973) Fate of transforming deoxyribonucleic acid after uptake by competent Bacillus subtilis: phenotypic characterization of radiation-sensitive recombination-deficient mutants. J Bacteriol 114:273–286

    Google Scholar 

  • Dubnau D, Cirigliano C (1974) Genetic characterization of recombination deficient mutants. J Bacteriol 117:488–493

    Google Scholar 

  • Eitner G, Adler B, Frank P (1980) High-level synthesis of the recA protein is not sufficient for the suppression of SOS-functions in Escherichia coli K-12. Biol Zbl 99:443–451

    Google Scholar 

  • Eitner G, Solonin AS, Tanyashin VI (1981) Cloning of a recA like gene of Proteus mirabilis. Gene 14:301–308

    Google Scholar 

  • Eitner G, Adler B, Lanzov VA, Hofemeister J (1982) Interspecies recA protein substitution in Escherichia coli and Proteus mirabilis. Mol Gen Genet 185:481–486

    Google Scholar 

  • Gryczan TJ, Contente S, Dubnau D (1978) Characterization of Staphylococcus aureus plasmids introduced by transformation into Bacillus subtilis. J Bacteriol 134:318–329

    Google Scholar 

  • Hofemeister J, Fleischhacker M, Adler B, Eitner G, Steinborn G, Böhme H (1979) DNA repair in Proteus mirabilis V. Post-irradiation response and the defective lysogeny of strains derived from PGVI. Biol Zbl 98:315–332

    Google Scholar 

  • Hofemeister J, Israeli-Reches M, Dubnau D (1983) Integration of plasmid pE194 at multiple sites on the Bacillus subtilis chromosome. Mol Gen Genet 189:58–68

    Google Scholar 

  • Kreft J, Bernhard K, Goebel W (1978) Recombinant plasmids capable of replication in Bacillus subtilis and Escherichia coli. Mol Gen Genet 162:59–67

    Google Scholar 

  • Kreft J, Burger KJ, Goebel W (1983) Expression of antibiotic resistance genes from Escherichia coli in Bacillus subtilis. Mol Gen Genet 190:384–389

    Google Scholar 

  • Krøll J (1973) Rocket-line immunoelectrophoresis. Scand J Immunol 2. suppl 1:83–87

    Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Google Scholar 

  • Little JW, Edmiston SH, Pacelli LZ, Mount D (1980) Cleavage of the Escherichia coli lexA protein by recA protease. Proc Natl Acad Sci USA 77:3225–3229

    Google Scholar 

  • Little JW, Mount D (1982) The SOS regulatory system of Escherichia coli. Cell 19:11–22

    Google Scholar 

  • Love E, D'Ambrosio J, Brown NC (1976) Mapping of the gene specifying DNA polymerase III of Bacillus subtilis. Mol Gen Genet 144:313–321

    Google Scholar 

  • McEntee K (1977) Protein X is the product of the recA gene of Escherichia coli. Proc Natl Acad Sci USA 74:5275–5279

    Google Scholar 

  • Moran CP, Land N, LeGrice SFJ, Lee G, Stephens M, Sonnenschein AL, Pero J, Losick R (1982) Nucleotide sequence that signals the initiation of transcription and translation in Bacillus subtilis. Mol Gen Genet 186:339–346

    Google Scholar 

  • Murray CL, Rabinowitz JC (1982) Species specific translation: characterization of B. subtilis ribosome binding sites. In: Ganesan AT, Chang S, Hoch JA (eds) Molecular cloning and gene regulation in Bacilli. Academic Press, New York, p 271

    Google Scholar 

  • Ouchterlony O (1967) Immunodiffusion and immunelectrophoresis. In: Weir DM (ed) Handbook of experimental immunology. Blackwell Scientific Publications, Oxford and Edinburgh, pp 655–707

    Google Scholar 

  • Pierre A, Salles B, Paoletti C (1982) Measurement of recA protein Induction in Salmonella typhimurium: a possible biochemical test for the detection of DNA damaging agents. Biochimie 64:775–781

    Google Scholar 

  • Primose SB, Ehrlich SD (1981) Instability associated with deletion formation in a hybrid plasmid. Plasmid 6:193–201

    Google Scholar 

  • Radding CM (1978) Genetic recombination: strand transfer and mismatch repair. Ann Rev Biochem 47:847–880

    Google Scholar 

  • Radding CM (1981) Recombination activities of Escherichia coli RecA protein. Cell 25:3–4

    Google Scholar 

  • Radman M (1974) Phenomenology of an inducible mutagenic DNA repair pathway in Escherichia coli: SOS repair hypothesis. In: Miller (ed) Molecular and environmental aspects of mutagenesis. CC Thomas, Springfield, pp 128–142

    Google Scholar 

  • Roberts WJ, Roberts CW, Craig NC (1978) Escherichia coli recA gene product inactivates phage lambda repressor. Proc Natl Acad Sci USA 75:4714–4718

    Google Scholar 

  • Sadaie Y, Kada T (1976) Recombination-deficient mutants of Bacillus subtilis. J Bacteriol 125:489–500

    Google Scholar 

  • Smith KC, Meun DHC (1970) Repair of radiation-induced damage in Escherichia coli. I. Effect of rec mutations on postreplication repair of damage due to ultraviolet radiation. J Mol Biol 51:459–472

    Google Scholar 

  • Spizizen J (1958) Transformation of biochemically deficient strains of Bacillus subtilis by deoxyribonucleate. Proc Natl Acad Sci USA 44:1072–1078

    Google Scholar 

  • Towbin H, Stachlin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354

    Google Scholar 

  • deVos WM, Venema G (1983) Transformation of Bacillus subtilis competent cells: Identification and regulation of the recE gene product. Mol Gen Genet 190:56–64

    Google Scholar 

  • Weeke B (1973) Rocket immunoelectrophoresis. Scand J Immunol (2. suppl) 1:37–46

    Google Scholar 

  • Weinstock GM, McEntee K, Lehman IR (1979) ATP-dependent renaturation of DNA catalyzed by the RecA protein of Escherichia coli. Proc Natl Acad Sci USA 76:126–130

    Google Scholar 

  • Witkin EW (1976) Ultraviolet mutagenesis and inducible DNA repair in Escherichia coli. Bacteriol Rev 40:869–907

    Google Scholar 

  • Yasbin RE (1977) DNA repair in Bacillus subtilis. I. The presence of an inducible system. Mol Gen Genet 153:211–218

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by P. Emmerson

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eitner, G., Manteuffel, R. & Hofemeister, J. Functional substitution of the recE gene of Bacillus subtilis by the recA gene of Proteus mirabilis . Mol Gen Genet 195, 516–522 (1984). https://doi.org/10.1007/BF00341456

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00341456

Keywords

Navigation