Skip to main content
Log in

Structure of binary solution droplets: Continuum theory and Monte Carlo simulation

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

To calculate the formation energy of a binary mixture droplet out of the gas phase in classical ‘heteromolecular’ nucleation theory, one has to take into account that the concentration of the solution near the droplet surface can be different from the composition in the droplet interior (‘surface enrichment’, Gibbs adsorption equation). This problem is solved in a simple picture where the composition varies spatially but where one has a sharp liquid-gas surface. In a material independent continuum theory, the variation of the composition is assumed to give a free energy contribution proportional to the square of the concentration gradient. This treatment of the surface enrichment gives a formation energy contribution smaller (for large droplets) by a factor 1 −1/√3 than previous theories (Döring and Neumann, 1940; Stauffer and Kiang, 1974), which therefore overestimated the surface enrichment for large droplets. This continuum theory is tested by Monte Carlo methods on a particularly symmetric mixture, the magnetic spin 1/2 Ising model. Here up-spins are identified with one type of molecule and down spins with another type. Reasonable agreement with the continuum theory is found, even for parameter ranges where the assumptions of the continuum theory are no longer valid. The results show clearly a strong but smooth variation of the concentration within the droplet. They constitute to our knowledge the first computer simulations of mixture microclusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abraham, F. F.: 1974, Homogeneous Nucleation Theory. Academic Press, London/New York.

    Google Scholar 

  • Binder, K.: 1974, Thin Solid Films 20, 367.

    Google Scholar 

  • Binder, K.: 1975, in C. Domb, and M. S. Green (eds.), Phase Transitions and Critical Phenomena, Vol. 5. Academic Press, London/New York.

    Google Scholar 

  • Binder, K. and Hohenberg, P. C.: 1974, Phys. Rev. B9, 2194.

    Google Scholar 

  • Binder, K., Rauch, H., and Wildpaner, V.: 1970, J. Phys. Chem. Solids 31, 391.

    Google Scholar 

  • Binder, K., Rauch, H., and Wildpaner, V.: 1974, Moscow Magnetism Conference 1973, to be published.

  • Cox, R. A.: 1974: Tellus 26, 235.

    Google Scholar 

  • Chu, B.: 1972, Ber. Bunsenges. 76, 202.

    Google Scholar 

  • Döring, W. and Neumann, K.: 1940, Z. Physik. Chem. A186; 193; 203.

  • Doyle, G. J.: 1961, J. Chem. Phys. 35, 795.

    Google Scholar 

  • Englert-Chwoles, A. and Prigogine, I.: 1958, Nuovo Cim. Suppl. 9, 347.

    Google Scholar 

  • Eyring, H. and Jhon, M. S.: 1969, Significant Liquid Structures, Wiley, New York.

    Google Scholar 

  • Fisk, S. and Widom, B.: 1969, J. Chem. Phys. 50, 3219.

    Google Scholar 

  • Flood, H.: 1934. Z. Physik. Chem. A170, 286.

    Google Scholar 

  • Guggenheim, E. A.: 1952, Mixtures, Clarendon Press, Oxford.

    Google Scholar 

  • Kadanoff, L. P., Götze, W., Hambler, D., Hecht, R., Lewis, E. A. S., Palciauskas, V., Rayl, M., Swift, J., Aspnes, D., and Kane, J.: 1967, Rev. Mod. Phys. 39, 395.

    Google Scholar 

  • Kiang, C. S., Stauffer, D., Mohnen, V. A., Bricard, J., and Vigla, D.: 1973, Atmos. Envir. 7, 1279.

    Google Scholar 

  • Kiang, C. S. and Stauffer, D.: 1974, Faraday Symp. Chem. Soc. 7, 26.

    Google Scholar 

  • Kim, S. W., Eyring, H., and Lee, Y. T.: 1969, J. Chem. Phys. 51, 3967.

    Google Scholar 

  • Langer, J. S. and Turski, L. A.: 1973, Phys. Rev. A8, 3230.

    Google Scholar 

  • Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E.: 1953, J. Chem. Phys. 21, 1087.

    Google Scholar 

  • Müller-Krumbhaar, H. and Binder, K.: 1973, J. Stat. Phys. 8, 1.

    Google Scholar 

  • Rusanov, A. I.: 1971, in J. F. Danielli, M. D. Rosenberg, and D. A. Cadenhead (eds.), Progress in Surface and Membrane Science, Vol. 4, Academic Press, London/New York.

    Google Scholar 

  • Sarkies, K. W. and Frankel, N. E.: 1971, J. Chem. Phys, 54, 433 and preprint.

    Google Scholar 

  • Stauffer, D. and Kiang, C. S.: 1974, Icarus 21, 129.

    Google Scholar 

  • Thomas, S.: 1974, Appl. Phys. Letters 24, 1.

    Google Scholar 

  • Tolman, R. C.: 1949, J. Chem. Phys. 17, 333.

    Google Scholar 

  • Wildpaner, V.: 1974, Z. Physik 270, 215.

    Google Scholar 

  • Wu, E. S. and Webb, W. W.: 1973, Phys. Rev. A8, 2065 and 2077.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

After October 1, 1978 at Institute for Theoretical Physics, University, D-66 Saarbrücken 15, F.R.G.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stauffer, D., Binder, K. & Wildpaner, V. Structure of binary solution droplets: Continuum theory and Monte Carlo simulation. Water, Air, and Soil Pollution 3, 515–525 (1974). https://doi.org/10.1007/BF00341005

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00341005

Keywords

Navigation