Skip to main content
Log in

The UV excision-repair system of Saccharomyces cerevisiae is involved in the removal of methylcytosines formed in vivo by a cloned prokaryotic DNA methyltransferase

  • Short communications
  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

DNA methyltransferase activity is not normally found in yeast. To investigate the response of Saccharomyces cerevisiae to the presence of methylated bases, we introduced the Bacillus subtilis SPR phage DNA-[cytosine-5] methyltransferase gene on the shuttle vector, YEp51. The methyltransferase gene was functionally expressed in yeast under the control of the inducible yeast GAL10 promoter. Following induction we observed a time-dependent methylation of yeast DNA in RAD + and rad2 mutant strains; the rad2 mutant is defective in excision-repair of UV-induced DNA damage. Analysis of restriction endonuclease digestion patterns revealed that the relative amount of methylated DNA was greater in the excision defective rad2 mutant than in the RAD + strain. These data indicate that the yeast excision-repair system is capable of recognizing and removing m5C residues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Adams RLP, Burdon RH (1985) Methylation and its relationship with transcription. In: Rich A (ed) Molecular biology of DNA methylation. Springer, New York, pp 115–161

    Google Scholar 

  • Antequera FM, Tamame J, Villaneuva JR, Santos T (1984) J Biol Chem 259:8033–8036

    Google Scholar 

  • Antequera FM, Tamame J, Villaneuva JR, Santos T (1985) Nucleic Acids Res 13:6545–6558

    Google Scholar 

  • Bird AP (1987) Trends Genet 3:342–347

    Google Scholar 

  • Broach JR, Li Y-Y, Wu L-C, Jayaram M (1983) In: Inouye (ed) Experimental manipulation of gene expression. Academic Press, New York, pp 83–117

    Google Scholar 

  • Brooks JE, Blumenthal RM, Gingeras TR (1983) Nucleic Acids Res 11:837–851

    Google Scholar 

  • Bull JR, Wootton JC (1984) Nature 310:701–704

    Google Scholar 

  • Cedar H, Solage A, Glaser G, Razin A (1979) Nucleic Acids Res 6:2125–2132

    Google Scholar 

  • Doerfler W (1983) Annu Rev Biochem 52:93–124

    Google Scholar 

  • Doerfler W (1984) Curr Top Microbiol Immunol 108:79–98

    Google Scholar 

  • Fehér Z, Kiss A, Venetianer P (1983) Nature 302:266–268

    Google Scholar 

  • Fehér Z, Schablik M, Kiss Á, Zsindely A, Szabó G (1986) Curr Genet 11:131–137

    Google Scholar 

  • Fehér Z, Schlagman SL, Miner Z, Hattman S (1988) Gene 73:193–195

    Google Scholar 

  • Gorovsky MA, Hattman S, Pleger GL (1973) J Cell Biol 56:697–701

    Google Scholar 

  • Günthert U, Reiners L (1987) Nucleic Acids Res 15:3689–3702

    Google Scholar 

  • Higgins DR, Prakash L, Reynolds P, Prakash S (1984) Gene 30:121–128

    Google Scholar 

  • Hoekstra MF, Malone RE (1985) Mol Cell Biol 5:610–618

    Google Scholar 

  • Hoekstra MF, Malone RE (1986) Mol Cell Biol 6:3555–3558

    Google Scholar 

  • Jupe ER, Magill JM, Magill CW (1986) J Bacteriol 165:420–423

    Google Scholar 

  • Kiss A, Baldauf F (1983) Gene 21:111–119

    Google Scholar 

  • Miller R, Prakash L, Prakash S (1982) Mol Cell Biol 2:939–948

    Google Scholar 

  • Miner Z (1989) PhD dissertation, University of Rochester, Rochester, NY, USA

  • Pósfai G, Baldauf F, Erdei S, Pósfai J, Venetianer P, Kiss A (1984) Nucleic Acids Res 12:9039–9049

    Google Scholar 

  • Proffitt JH, Davie JR, Swinton D, Hattman S (1984) Mol Cell Biol 4:985–988

    Google Scholar 

  • Rogers SD, Rogers ME, Saunders G, Holt G (1986) Curr Genet 10:557–560

    Google Scholar 

  • Russell PJ, Rodland KD, Rachlin EM, McCloskey JA (1987) J Bacteriol 160:2902–2905

    Google Scholar 

  • Selker EU, Stevens JN (1985) Proc Natl Acad Sci USA 82:8114–8118

    Google Scholar 

  • Specht CA, Novotny CP, Ullrich RC (1984) Curr Genet 8:219–232

    Google Scholar 

  • Tamame J, Antequera FM, Villaneuva JR, Santos T (1983) Moll Cell Biol 3:2287–2297

    Google Scholar 

  • Urieli-Shoval S, Gruenbaum Y, Sedat J, Razin A (1982) FEBS Letts 146:148–152

    Google Scholar 

  • Vanyushin BF, Kadrova DKh, Karimov KhKh, Belozerskii AN (1971) Biokhimya (English translation) 36:1048–1053

    Google Scholar 

  • Wilcox DR, Prakash L (1981) J Bacteriol 148:618–623

    Google Scholar 

  • Zolan ME, Pukkila PJ (1985) UCLA Symp Mol Cell Biol 34:333–344

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fehér, Z., Schlagman, S.L., Miner, Z. et al. The UV excision-repair system of Saccharomyces cerevisiae is involved in the removal of methylcytosines formed in vivo by a cloned prokaryotic DNA methyltransferase. Curr Genet 16, 461–464 (1989). https://doi.org/10.1007/BF00340726

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00340726

Key words

Navigation