Skip to main content
Log in

Mechanism of conjugation and recombination in bacteria

IX. The role of DNA synthesis in post-conjugal genetic recombination

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

Development of resistance to 23P-decay of donor genetic determinants after their transfer into the female cell is dependent on unabated DNA synthesis. A similar dependence upon DNA synthesis was found in recombinational events. Both processes show a similar time-course. The DNA synthesis, involved, seems distinct from physiological replication of the chromosome. The formation of the structure resistant to 32P-decay is going on concomitantly with recombinational process and is completed within 45 to 55 minutes after transfer, before beginning of the replication of recombinant structure. The bearing of these facts on the molecular mechanism of genetic recombination is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe, M., Tomizawa, J.: Replication of Escherichia coli chromosome. Proc. nat. Acad. Sci. (Wash.) 58, 1911–1918 (1967).

    Google Scholar 

  • Abel, W. O.: Intergenische Rekombination und Chromosomenduplikation. Ber. dtsch. bot. Ges. 80, 517–521 (1967).

    Google Scholar 

  • Adams, M. H.: Bacteriophages. New York: Interscience Publishers Inc. 1959.

    Google Scholar 

  • Anderson, T. F.: Recombination and segregation in Escherichia coli. Cold Spr. Harb. Symp. quant. Biol. 23, 47–58 (1958).

    Google Scholar 

  • Bressler, S. E., Lanzov, V. A.: Mechanism of genetic recombination during bacterial conjugation of Escherichia coli K-12. Incorporation of the donor DNA fragment into the recombinant chromosome. Genetics 56, 117–124 (1967).

    Google Scholar 

  • —, Blinkova, A. A.: Mechanism of genetic recombination during bacterial conjugation in Escherichia coli K-12. I. Heterogenity of the progeny of conjugated cells. Genetics 56, 105–116 (1967).

    Google Scholar 

  • —, Lukjaniec-Blinkova, A. A.: On the mechanism of conjugation in Escherichia coli K-12. Molec. Gen. Genetics 102, 269–284 (1968)

    Google Scholar 

  • Chiang, K. S., Sueoka, N.: Replication of chromosomal and cytoplasmic DNA during mitosis and meiosis in the Eucaryote Chlamydomonas reinhardii. J. cell. Physiol. 70, Suppl. 1, 89–112 (1967).

    Google Scholar 

  • Clark, A. J., Barbour, S. D.: Genetic and biochemical analysis of the role of recB and recC in recombination in E. coli K 12. Proc. Lunteren Symp. “The molecular mechanism of genetic recombination in micro-organisms”. Lunteren, The Netherlands 1969 (in press).

  • —, Margulies, A. D.: Isolation and characterisation of recombination-deficient mutants of Escherichia coli K 12. Proc. nat. Acad. Sci. (Wash.) 53, 451–459 (1965).

    Google Scholar 

  • Clark, O. J., Maaløe, O.: DNa replication and division cycle in Escherichia coli. J. molec. Biol. 23, 99–112 (1967).

    Google Scholar 

  • Cohen, A., Fisher, W. D., Curtiss, R., Adler H. I.: The properties of DNA transferred to mini-cells during conjugation. Cold Spr. Harb. Symp. quant. Biol. 33, 635–642 (1968).

    Google Scholar 

  • Cooper, S., Helmstetter, C. E.: Chromosome replication and the division cycle of Escherichia coli B/r. J. molec. Biol. 31, 519–540 (1968).

    Google Scholar 

  • Esposito, R. E.: Genetic recombination in synchronized cultures of Saccharomyces cerevisiae. Genetics 59, 191–210 (1968).

    Google Scholar 

  • Fogel, S., Hurst, D. D.: Meiotic gene conversion in yeast tetrads and the theory of recombination. Genetics 57, 455–481 (1967).

    Google Scholar 

  • Fuerst, C. R., Stent, G. S.: Inactivation of bacteria by decay of incorporated radiactive phosphorus. J. gen. Physiol. 40, 73–90 (1956).

    Google Scholar 

  • Grell, R. A.: Pairing at chromosomal level. J. cell. Physiol. 70, Suppl. 1, 119–145 (1967).

    Google Scholar 

  • Gross, J. D.: The effect of unbalanced growth on recombinant formation in E. coli. Genet. Res. 4, 457–462 (1963).

    Google Scholar 

  • Hayes, W.: The kinetics of the mating process in E. coli. J. gen. Microbiol. 16, 97–119 (1957).

    Google Scholar 

  • Helmstetter, C. E.: Rate of DNA synthesis during the division cycle of Escherichia coli B/r. J. molec. Biol. 24, 417–427 (1967).

    Google Scholar 

  • —, Cooper, S.: DNA synthesis during the division cycle of rapidly growing E. coli B/r. J. molec. Biol. 31, 507–518 (1968).

    Google Scholar 

  • Holliday, R.: A mechanism for gene conversion in fungi. Genet. Res. 5, 282–304 (1964).

    Google Scholar 

  • Hotta, Y., Ito, M., Stern, H.: Synthesis of DNA during meiosis. Proc. nat. Acad. Sci. (Wash.) 56, 1184–1191 (1966).

    Google Scholar 

  • Howard-Flanders, P., Theriot, L.: Mutants of Escherichia coli K 12 defective in DNA repair and genetic recombination. Genetics 53, 1137–1150 (1966).

    Google Scholar 

  • Jacob, F., Wollman, E. L.: Sexuality and the genetics of Bacteria. New York: Academic Press 1961.

    Google Scholar 

  • Joshi, G. P., Siddiqi, Q.: Enzyme synthesis following conjugation and recombination in Escherichia coli. J. molec. Biol. 32, 201–210 (1968).

    Google Scholar 

  • Kunicki-Goldfinger, W.: Post-conjugal pairing and recombination in E. coli K 12. Proc. Lunteren Symp. “The molecular mechanism of genetic recombination in micro-organisms.” Lunteren, The Netherlands 1969 (in press).

  • —, Piekarowicz, A., Wlodarczyk, M.: Changes in DNA structure prior to recombination in bacterial conjugation. Proc. 12th Int. Congr. Genetics, Tokyo 1, 35 (1968).

    Google Scholar 

  • Kurylo-Borowska, Z.: Edeine. In: Antibiotics, vol. 2, Biosynthesis, ed. Gottlieb, D., and Shaw, P. D.. Berlin-Heidelberg-New York: Springer 1967.

    Google Scholar 

  • Lederberg, J.: Sibbling recombinants in zygote pedigrees of Escherichia coli. Proc. nat. Acad. Sci. (Wash.) 43, 1060–1065 (1957).

    Google Scholar 

  • Mycielski, R., Gizycka, Z., Karska, B., Kunicki-Goldfinger, W.: Pattern of genophore replication in Hfr and F - cells of E. coli K 12. Acta microbiol. pol. Ser. A 1 (18), 93–100 (1969).

    Google Scholar 

  • —, Lityńska, J., Kunicki-Goldfinger, W.: Replication of a genophore during successive cell division cycles in E. coli K 12 synchronized with cold-shock. Acta microbiol. pol. 17, 287–292 (1968).

    Google Scholar 

  • Piekarowicz, A.: Mechanism of conjugation and recombination in bacteria. X. The role of donor DNA and of excision-repair mechanism in genetic recombination. Acta microbiol. pol., Ser. A 2 (19), (1969) (in press).

  • —, Kunicki-Goldfinger, W.: Mechanism of conjugation and recombination in bacteria. IV. Single-strandedness of donor DNA in mating bacteria. Acta microbiol. pol. 17, 135–146 (1968).

    Google Scholar 

  • —, Wlodarczyk, M., Kunicki-Goldfinger, W.: Mechanism of conjugation and recombination in bacteria. I. The role of DNA synthesis in Hfr and F - cells during matting. Molec. gen. Genetics 101, 131–139 (1968).

    Google Scholar 

  • Pritchard, R. K.: The relationship between conjugation, recombination and DNA synthesis in Escherichia coli. Proc. 11th Int. Congr. Genet., Genetics today, vol. 2, p. 55–68. Oxford: Pergamon Press 1965.

    Google Scholar 

  • Stent, G. S., Fuerst, C. R.: Inactivation of bacteriophages by decay of incorporated radioactive phosphorus. J. gen. Physiol. 38, 441–458 (1955).

    Google Scholar 

  • Taylor, A. E., Trotter, C. D.: Revised linkage map of Escherichia coli. Bact. Rev. 31, 332–353 (1967).

    Google Scholar 

  • Tomizawa, J.: Genetic structure of recombinant chromosome formed after mating in Escherichia coli. Proc. nat. Acad. Sci. (Wash.) 46, 91–101 (1960).

    Google Scholar 

  • Westergaard, M., Wettstein, D. von: The meiotic cycle in an Ascomycete. In: Effects of radiation on meiotic systems. Int. Atom Energy Agency, Vienna 113–120 (1968).

    Google Scholar 

  • Whitehouse, H. L. K.: An operator model of crossing-over. Nature (Lond.) 211, 708–713 (1966).

    Google Scholar 

  • —: Secondary crossing-over. Nature (Lond.) 215, 1352–1359 (1967).

    Google Scholar 

  • —, Hastings, P. J.: The analysis of genetic recombination and the polaron hybrid DNA model. Genet. Res. 6, 27–92 (1965).

    Google Scholar 

  • Wollman, E. L., Jacob, F., Hayes, W.: Conjugation and genetic recombination in Escherichia coli K 12. Cold Spr. Harb. Symp. quant. Biol. 21, 141–162 (1956).

    Google Scholar 

  • Wood, T. H.: Genetic recombination in Escherichia coli; clone heterogeneity and the kinetics of segregation. Science 157, 319–321 (1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by W. Gajewski

Rights and permissions

Reprints and permissions

About this article

Cite this article

Włodarczyk, M., Kunicki-Goldfinger, W. Mechanism of conjugation and recombination in bacteria. Molec. Gen. Genetics 106, 263–273 (1970). https://doi.org/10.1007/BF00340385

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00340385

Keywords

Navigation