Skip to main content
Log in

Chromatic induction: Responses of neurophysiological double opponent units?

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Equations have been derived that improve the quantification of sensory equidistant colour and lightness differences. This has been achieved by a physiological approach involving non-linear responses of cone mechanisms and two subsequent stages of linear opponent transformation to describe the Munsell System (Seim and Valberg, 1980). Using the formulation for the first opponent stage, colours induced into an achromatic center field by a chromatic surround varying in purity, are shown to follow the same power function of the opponent coordinates for all hues. By analogy, a physiological model for colour coding and colour induction is offered. Double opponent neurones with spatially antagonistic, spectrally opponent and symmetric receptive fields constitute the units of the model. Colour induction is related to lateral excitation and colour differences to response differences of these units.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baumgartner, G.: Die neuronale Aktivität des visuellen Systems der Katze und ihre Beziehungen zur subjektiven Sinnesphysiologie. Habilitation. Thesis, Universität Freiburg 1960

  • Boynton, R.M.: Human color vision. New York: Holt, Rinehart, and Winston 1979

    Google Scholar 

  • Creutzfeldt, O.D., Lee, B.B., Elephant, A.: A quantitative study of chromatic organisation and receptive fields of cells in the lateral geniculate body of the rhesus monkey. Exp. Brain Res. 35, 527–545 (1979)

    Google Scholar 

  • Daw, N.W.: Colour-coded ganglien cells in the goldfish retina. Extension of their receptive fields by means of new stimuli. J. Physiol. 1971, 567–592 (1968)

    Google Scholar 

  • Hunt, R.W.G.: Light and dark adaptation and the perception of color. J. Opt. Soc. Am. 42, 190–199 (1952)

    Google Scholar 

  • Hunt, R.W.G.: The perception of color in 7° fields for different states of adaption. J. Opt. Soc. Am. 43, 479–484 (1953)

    Google Scholar 

  • Hunt, R.W.G.: Measurement of color appearance. J. Opt. Soc. Am. 55, 1540–1551 (1965)

    Google Scholar 

  • Jameson, D., Hurvich, L.M.: Opponent chromatic induction: experimental evaluation and theoretical account. J. Opt. Soc. Am. 51, 46–53 (1961)

    Google Scholar 

  • Jameson, D., Hurvich, L.M.: Color adaptation: sensitivity, contrast, and after-images. In: Handbook of sensory physiology. Vol. VII/4. Visual psychophysics, pp. 568–581. Jameson, D., Hurvich, L.M. (eds.). Berlin, Heidelberg, New York: Springer 1972

    Google Scholar 

  • Jung, K.: Visual perception and neurophysiology. In: Handbook of sensory physiology. Vol. VII/3. Central visual information A, pp. 1–152. Jung, R. (ed.). Berlin, Heidelberg, New York: Springer 1973

    Google Scholar 

  • Kaneko, A., Tachibana, M.: Retina bipolar cells with double colour-opponent receptive fields. Nature 293, 220–222 (1981)

    Google Scholar 

  • Kries, J. von: Die Gesichtsempfindungen. Nagels Handbuch der Physiologie des Menschen. III, pp. 109–282. Braunschweig: Vieweg Verlag 1905

    Google Scholar 

  • MacAdam, D.L.: A nonlinear hypothesis for chromatic adaptation. Vision Res. 1, 9–41 (1961)

    Google Scholar 

  • MacAdam, D.L.: Chromatic adaptation. II. Nonlinear hypothesis. J. Opt. Soc. Am. 53, 1441–1445 (1963)

    Google Scholar 

  • Michael, C.R.: Opponent-colour and opponent contrast cells in lateral geniculate nucleus of the ground squirrel. J. Neurophysiol. 36, 536–550 (1973)

    Google Scholar 

  • Michael, C.R.: Color vision mechanisms in monkey cortex: dual-opponent cells with concentric receptive fields. J. Neurophysiol. 41, 572–588 (1978a)

    Google Scholar 

  • Michael, C.R.: Color vision mechanisms in monkey striate cortex: Simple cells with dual opponent-color receptive fields. J. Neurophysiol. 41, 1233–1249 (1978b)

    Google Scholar 

  • Michael, C.R.: Color-sensitive complex cells in monkey striate cortex. J. Neurophysiol. 41, 1250–1266 (1978c)

    Google Scholar 

  • Nayatani, Y., Takahama, K., Sobagaki, H.: Estimation of adaptation effects by use of a theoretical nonlinear model. Proceedings 19th session of CIE, Kyoto 1979. Publication CIE 50, 490–494 (1980)

    Google Scholar 

  • Pitt, F.H.G.: The nature of normal trichromatic and dichromatic vision. Proc. R. Soc. (London) B 132, 101–107 (1944)

    Google Scholar 

  • Pokorny, J.: Modeling blue-yellow opponency. Proceedings AIC Color 81, Berlin, September 1981, S. 7

  • Raynauld, J.-P.: Goldfish retina: sign of rod input in opponent color ganglion cells. Science 177, 84–85 (1972)

    Google Scholar 

  • Scheibner, H.: Untersuchungen zur Farbumstimmung des menschlichen Auges. Die Farbe 12, 6–58 (1963)

    Google Scholar 

  • Seim, T., Valberg, A.: Physiological response and the scaling of colour differences. Exp. Brain Res. 41, A 39 (1980)

    Google Scholar 

  • Seim, T., Valberg, A.: Uniformity of lightness and color: a new formula to describe the Munsell system. J. Opt. Soc. Am. (submitted) (1982)

  • Shevell, S.K.: The dual role of chromatic backgrounds in color perception. Vision Res. 18, 1649–1661 (1978)

    Google Scholar 

  • Spekreijse, H., Wagner, H.G., Wolbarsht, M.L.: Spectral and spatial coding of ganglion cell responses in goldfish retina. J. Neurophysiol. 35, 73–85 (1972)

    Google Scholar 

  • Valberg, A.: Non-linear chromatic induction. Die Farbe 19, 283–294 (1970)

    Google Scholar 

  • Valberg, A.: A method for the precise determination of achromatic colors including white. Vision Res. 11, 157–160 (1971)

    Google Scholar 

  • Valberg, A.: Color induction. Dependence on luminance, purity, and dominant or complementary wavelength of inducing stimuli. J. Opt. Soc. Am. 64, 1531–1540 (1974a)

    Google Scholar 

  • Valberg, A.: Lateral interaction between large retinal stimuli and symmetric receptive fields. Phys. Norv. 7, 227–235 (1974b)

    Google Scholar 

  • Valberg, A.: Color induction. A study of lateral interaction in human vision. University of Oslo, 1975

  • Valberg, A., Seim, T.: Color induction and physiological response. ARVO-abstract, 1981

  • Wagner, H.G.: Valenzmetrische Untersuchungen der Farbum-stimmung. Die Farbe 17, 229–284 (1968)

    Google Scholar 

  • Walraven, J.: Discounting the background — the missing link in the explanation of chromatic induction. Vision Res. 16, 289–295 (1976)

    Google Scholar 

  • Walraven, J.: Perceived colour under conditions of chromatic adaptation: Evidence for gain control by π mechanisms. Vision Res. 21, 611–620 (1981)

    Google Scholar 

  • Wiesel, T.N., Hubel, D.H.: Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. J. Neurophysiol. 29, 1115–1156 (1966)

    Google Scholar 

  • Wright, W.D.: The measurements and analysis of colour adaptation phenomena. Proc. R. Soc. (London) B 115, 49–87 (1934)

    Google Scholar 

  • Wyszecki, G., Stiles, W.S.: Color science. New York. Wiley 1967

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valberg, A., Seim, T. Chromatic induction: Responses of neurophysiological double opponent units?. Biol. Cybern. 46, 149–158 (1983). https://doi.org/10.1007/BF00339983

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00339983

Keywords

Navigation