Skip to main content
Log in

Spatiotemporal inseparability in early visual processing

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

We examine the implications of significant inseparable behaviour in centre-surround retinal cell types. From the form of a spatiotemporal centre-surround (CS) model which agrees qualitatively with physiological observations, we find that the sustained/transient dichotomy is a poor distinction for X-type/Y-type retinal ganglion cells since both exhibit inseparability. Static centre-surround models and spatiotemporal separable models are not valid for time-varying stimuli. Our results contradict the models for X- and Y-type ganglion cells proposed by Marr and Hildreth (1980) and Marr and Ullman (1981), and raise doubts about the physiological validity of Marr's zerocrossing theory. The CS filter is an attractive precursor to the extraction of 2-d motion information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barlow, H.B., Derrington, A., Harris, L., Lennie, P.: The effects of remote retinal stimulation on the responses of cat retinal ganglion cells. J. Physiol. (Lond.) 269, 177–194 (1977)

    Google Scholar 

  • Budrikis, Z.L.: Model approximations to visual spatio-temporal sine-wave threshold data. Bell Syst. Tech. J. 52, 1643–1667 (1973)

    Google Scholar 

  • Burr, D.J.: Matching elastic templates. In: Physical and biological processing of images, pp. 260–270. Braddick, O.J., Sleigh, A.C., eds. Berlin, Heidelberg, New York: Springer 1983

    Google Scholar 

  • Burr, D.J., Ross, J.: Constrast sensitivity at high velocities. Vision Res. 22, 479–484 (1982)

    Google Scholar 

  • Cleland, B.G., Levick, W.R.: Brisk and sluggish concentrically organized ganglion cells in the cat's retina. J. Physiol. (Lond.) 240, 421–456 (1974)

    Google Scholar 

  • Creuzfeldt, O.D., Lee, B.B., Elephandt, A.: A quantitative study of chromatic organization and receptor fields of cells in the later geniculate body of the rhesus monkey. Exp. Brain Res. 35, 527–545 (1979)

    Google Scholar 

  • Crowley, J.L.: A representation for visual information. PhD dissertation, Carnegie Mellon University. Available as CMU Robotics Institute Technical Report CMU-RI-TR-82-7 (1982)

  • Daugman, J.G.: Principles of visual neural receptive field organization: two-dimensional spectral consequences. IEEE Trans. Syst. Man Cybern. (to appear)

  • Dawis, S., Shapley, R., Kaplan, E., Tranchina, D.: The receptive field organization of X cell in the cat: spatiotemporal coupling and asymmetry. Vision Res. 24, 549–564 (1984)

    Google Scholar 

  • Derrington, A.M., Lennìe, P.: The influence of temporal frequency and adaptation level on the receptive field organization of retinal ganglion cells in cat. J. Physiol. (Lond.) 333, 343–466 (1982)

    Google Scholar 

  • Enroth-Cugell, C., Robson, J.G.: The contrast sensitivity of retinal ganglion cells of the cat. J. Physiol. (Lond.) 187, 517–552 (1966)

    Google Scholar 

  • Enroth-Cugell, C., Lennie, P.: The control of retinal ganglion cell discharge by receptive field surround. J. Physiol. (Lond.) 247, 551–578 (1975)

    Google Scholar 

  • Enroth-Cugell, C., Pinto, L.H.: Properties of the surround response mechanism of the cat retinal ganglion cells and centre-surround interaction. J. Physiol. (Lond.) 220, 403–439 (1972)

    Google Scholar 

  • Enroth-Cugell, C., Robson, J.G., Schweitzer-Tong, D.E., Watson, A.B.: Spatio-temporal interactions in cat retinal ganglion cells showing linear spatial summation. J. Physiol. (Lond.) 341, 279–407 (1983)

    Google Scholar 

  • Fischer, B., Kruger, J., Droll, W.: Quantitative aspects of the shift-effect in cat retinal ganglion cells. Brain Res. 83, 391–403 (1975)

    Google Scholar 

  • Fleet, D.J.: The early processing of spatiotemporal visual information. Tech. Rep.: Research in biological and computational vision at the University of Toronto, RBCV-TR-84-7 (available through the Department of Computer Science)

  • Fleet, D.J., Jepson, A.D.: A cascaded filter approach to the construction of velocity selective mechanisms. Tech. Rep.: RBCV-TR-84-6 (1984)

  • Goldberg, M.E., Wurtz, R.H.: Activity of superior colliculus in behaving monkey. 1. Visual receptive fields of single neurons. J. Neurophysiol. 35, 542–559 (1972)

    Google Scholar 

  • Hammond, P.: Cat retinal ganglion cells: size and shape of receptive field centres. J. Physiol. 242, 99–118 (1974)

    Google Scholar 

  • Hochstein, S., Shapley, R.M.: Quantitative analysis of retinal ganglion cell classifications. J. Physiol. (Lond.) 262, 237–264 (1976)

    Google Scholar 

  • Hubel, D.H., Wiesel, T.N.: Functional architecture of macaque monkey visual cortex. Proc. R. Soc. Lond. B 198, 1–59 (1977)

    Google Scholar 

  • Kelly, D.H.: Frequency doubling in visual responses. J. Opt. Soc. Am. 56, 1628–1633 (1966)

    Google Scholar 

  • Kelly, D.H.: Motion and vision. II. Stabilized spatiotemporal threshold surface. J. Opt. Soc. Am. 69, 1340–1349 (1979)

    Google Scholar 

  • Kelly, D.H.: Retinal inhomogeneity. I. Spatiotemporal contrast sensitivity. J. Opt. Soc. Am. A1, 107–113 (1984)

    Google Scholar 

  • Kuffler, S.W.: Discharge patterns and functional organization of mammalian retina. J. Neurophysiol. 16, 37–68 (1953)

    Google Scholar 

  • Kulikowski, J.J., King-Smith, P.E.: Spatial arrangement of line, edge, and grating detectors revealed by subthreshold summation. Vision Res. 13, 1455–1478 (1973)

    Google Scholar 

  • Kulikowski, J.J., Tolhurst, D.J.: Psychophysical evidence for sustained and transient detectors in human vision. J. Physiol. (Lond.) 232, 149–162 (1973)

    Google Scholar 

  • Lennie, P.: Perceptual signs of parallel pathways. Phil. Trans. R. Soc. Lond. B 290, 23–37 (1980a)

    Google Scholar 

  • Lennie, P.: Parallel visual pathways: a review. Vision Res. 20, 561–594 (1980b)

    Google Scholar 

  • Levick, W.R., Cleland, B.W., Dubin, M.W.: Lateral geniculate neurons of the cat: retinal inputs and physiology. Invest. Ophthalmol. 11, 302–311 (1972)

    Google Scholar 

  • Levick, W.R., Thobis, L.N.: Bimodal receptive fields of cat retinal ganglion cells. Vision Res. 23, 1561–1572 (1983)

    Google Scholar 

  • Linsenmeier, R.A., Frishman, L.J., Jakiela, H.G., Enroth-Cugell, C.: Receptive field properties of X-and Y-cells in the cat retina derived from contrast sensitivity measurements. Vision Res. 22, 1173–1183 (1982)

    Google Scholar 

  • Marr, D.: Vision. San Francisco: Freeman 1982

    Google Scholar 

  • Marr, D., Poggio, T.: A theory of human stereo vision. Proc. R. Soc. Lond. B 204, 301–428 (1979)

    Google Scholar 

  • Marr, D., Hilreth, E.C.: Theory of edge detectioin. Proc. R. Soc. Lond. B 207, 187–217 (1980)

    Google Scholar 

  • Marr, D., Ullman, S.: Directional selectivity and its use in early visual processing. Proc. R. Soc. Lond. B 211, 151–180 (1981)

    Google Scholar 

  • Marrocco, R.T., McClurkin, J.W., Young, R.A.: Modulation of lateral geniculate nucleus cell responsiveness by visual activation of the corticogeniculate pathway. J. Neurosci. 2, 256–263 (1982)

    Google Scholar 

  • Mayhew, J.E.W., Frisby, J.P.: Surfaces with steep variations in depth pose difficulties for orientationally tuned disparity filters. Perception 8, 691–698 (1979)

    Google Scholar 

  • McIlwain, J.T.: Receptive fields of optic tract axons and lateral geniculate cells; peripheral extent and barbiturate sensitivity. J. Neurophysiol. 27, 1154–1173 (1964)

    Google Scholar 

  • Naka, K.-I.: The cells horizontal cells talk to. Vision Res. 22, 653–660 (1982)

    Google Scholar 

  • Nothdurth, H.C., Lee, B.B.: Responses to coloured patterns in the macaque lateral geniculate nucleus: analysis of receptive field properties. Exp. Brain Res. 48, 55–65 (1982)

    Google Scholar 

  • Richter, J., Ulman, S.: A model for the temporal organization of X- and Y-type receptive fields in the primate retina. Biol. Cybern. 43, 127–145 (1982)

    Google Scholar 

  • Robson, J.G.: Spatial and temporal contrast-sensitivity functions of the visual system. J. Opt. Soc. Am. 56, 1141–1142 (1966)

    Google Scholar 

  • Rodieck, R.W.: Quantitative analysis of cat retinal ganglion cell response to visual stimuli. Vision Res. 5, 583–601 (1965)

    Google Scholar 

  • Rodieck, R.W., Stone, J.: Analysis of receptive fields of cat retinal ganglion cells. J. Neurophysiol. 28, 833–849 (1965)

    Google Scholar 

  • Sachs, M.B., Nachmias, J., Robson, J.G.: Spatial frequency channels in human vision. J. Opt. Soc. Am. 61, 1176–1186 (1971)

    Google Scholar 

  • Schade, O.H.: Optical and photoelectric analog of the eye. J. Opt. Soc. Am. 46, 721–739 (1956)

    Google Scholar 

  • Srinivasan, M.V., Laughlin, S.B., Dobs, A.: Predictive coding: a fresh view of inhibition in the retina. Proc. R. Soc. Lond. B 216, 427–459 (1982)

    Google Scholar 

  • Stevens, J.K., Gerstein, G.L.: Spatiotemporal organization of cat lateral geniculate fields. J. Neurophysiol. 39, 213–238 (1976)

    Google Scholar 

  • Stein, A., Mullikin, W., Stevens, J.K.: The spatiotemporal building blocks of X-, Y-, and W-ganglion cell receptive fields of the cat retina. Exp. Brain Res. 49, 341–352 (1983)

    Google Scholar 

  • van Ness, F.L., Koenderink, J.J., Bouman, M.A.: Spatiotemporal modulation transfer in the human eye. J. Opt. Soc. Am. 57, 1082–1088 (1967)

    Google Scholar 

  • Victor, J.D., Shapley, R.M.: Receptive field mechanisms of cat X and Y retinal ganglion cells. J. Gen. Physiol. 74, 275–298 (1979)

    Google Scholar 

  • Watson, A.B., Robson, J.G.: Discrimination at threshold: labelled detectors in human vision. Vision Res. 21, 1115–1122 (1982)

    Google Scholar 

  • Werblin, F.S.: Control of retinal sensitivity. II. Lateral interactions at the outer plexiform layer. J. Gen. Physiol. 63, 62–87 (1974)

    Google Scholar 

  • Wilson, H.R., Giese, S.C.: Threshold visibility of frequency gradient patterns. Vision Res. 17, 1177–1190 (1977)

    Google Scholar 

  • Wilson, H.R., Bergen, J.R.: A four mechanism model for threshold spatial vision. Vision Res. 19, 19–42 (1979)

    Google Scholar 

  • Witkin, A.P.: Space-scale filtering. Proc. IJCAI 83, 1019–1024 (1983)

    Google Scholar 

  • Yuille, A.L., Poggio, T.: Scaling theorems for zero-crossings. MIT AI Memo 722 (1983)

  • Zucker, S.W., Hummel, R.A.: Receptive fields and the reconstruction of visual information. Tech. Rep.: McGill University Computer Vision and Robotics Laboratory, TR83-17 (1983)

  • Wassle, H., Boycott, B.B., Ilbing, R.-B.: The arrays of on- and off-beta cells in the cat retina and some functional considerations. Proc. R. Soc. Lond. B 212, 177–195 (1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fleet, D.J., Hallett, P.E. & Jepson, A.D. Spatiotemporal inseparability in early visual processing. Biol. Cybern. 52, 153–164 (1985). https://doi.org/10.1007/BF00339944

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00339944

Keywords

Navigation