Skip to main content
Log in

Analysis of transcription and processing signals of the 16S–23S rRNA operon of Mycoplasma hyopneumoniae

  • Original Articles
  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

The 16S and 23S rRNA genes of Mycoplasma hyopneumoniae are closely spaced in one operon. The two genes are separated by a spacer region of 500 bp which shown no sequence homology to bacterial tRNA genes. Within this operon seven 5′ and five 3′ ends of various rRNA species were mapped and the corresponding DNA was sequenced. The results are consistent with the following model for synthesis of rRNAs: Transcription of the operon is initiated from either of two tandemly arranged promoters leading to a large precursor RNA consisting of both 16S and 23S rRNAs. This primary transcript is first cleaved within stem structures surrounding the two rRNAs to yield premature 16S and 23S rRNAs. By further processing events the mature 5′ and 3′ ends are generated. The promoter sequences of this operon differ from those of other eubacterial promoters in lacking the typical -35 region. The putative termination site at the 3′ end of the operon is reminiscent of rho-independent terminators in Escherichia coli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amikam D, Glaser G, Razin S (1984) Mycoplasmas (Mollicutes) have a low number of rRNA genes. J Bacteriol 158:376–378

    Google Scholar 

  • Brosius J, Dull TJ, Sleeter DD, Noller HF (1981) Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. J Mol Biol 148:107–127

    Google Scholar 

  • Casey J, Davidson N (1977) Rates of formation and thermal stabilities of RNA:DNA and DNA:DNA duplexes at high concentrations of formamide. Nucleic Acids Res 4:1539–1552

    Google Scholar 

  • Dahlberg AE, Dahlberg JE, Lund E, Tokimatsu H, Rabson AB, Calvert PC, Reynolds F, Zahalak H (1978) Processing of the 5′ end of E. coli 16S ribosomal RNA. Proc Natl Acad Sci USA 75:3598–3602

    Google Scholar 

  • Glaser G, Sarmientos P, Cashel M (1983) Functional interrelationship between two tandem E. coli ribosomal RNA promoters. Nature 302:74–76

    Google Scholar 

  • Göbel U, Butler GH, Stanbridge EJ (1984) Comparative analysis of mycoplasma ribosomal RNA operons. Isr J Med Sci 20:762–764

    Google Scholar 

  • Green CJ, Stewart GC, Hollis MA, Vold BS, Bott KF (1985) Nucleotide sequence of the Bacillus subtilis ribosomal RNA operon, rrnB. Gene 37:261–266

    Google Scholar 

  • Iwami M, Muto A, Yamao F, Osawa S (1984) Nucleotide sequence of the rrnB 16S ribosomal RNA gene from Mycoplasma capricolum. Mol Gen Genet 196:311–316

    Google Scholar 

  • Klinkert MQ, Taschke C, Schaller H, Herrmann R (1986) Identification of Mycoplasma hyopneumoniae proteins from an Escherichia coli expression library and analysis of transcription and translation signals. In: Lark DL (ed) Molecular Biology of Microbiological Pathogenicity FEMS Meeting Lulea, Academic Press, London, pp 369–374

    Google Scholar 

  • Kop J, Wheaton V, Gupta R, Woese CR, Noller HF (1984) Complete nucleotide sequence of a 23S ribosomal RNA gene from Bacillus stearothermophilus. DNA 3:347–357

    Google Scholar 

  • Loughney K, Lund E, Dahlberg JE (1982) TRNA genes are found between the 16S and 23S rRNA genes in Bacillus subtilis. Nucleic Acids Res 10:1607–1624

    Google Scholar 

  • Loughney K, Lund E, Dahlberg JE (1983) Ribosomal RNA-precursors of Bacillus subtilis. Nucleic Acids Res 11:6709–6721

    Google Scholar 

  • Lund E, Dahlberg JE (1977) Spacer transfer RNAs in ribosomal RNA transcripts of E. coli: processing of 30S ribosomal RNA in vitro. Cell 11:247–262

    Google Scholar 

  • Maxam AM, Gilbert W (1980) Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol 65:499–560

    Google Scholar 

  • Mc Graw III RA (1984) Dideoxy DNA sequencing with end-labeled oligonucleotide primers. Anal Biochem 143:298–303

    Google Scholar 

  • Nomura M, Gourse R, Baugham G (1984) Regulation of the synthesis of ribosomes and ribosomal components. Annu Rev Biochem 53:75–117

    Google Scholar 

  • Ogasawara N, Moriya S, Yoshikawa H (1983) Structure and organization of rRNA operons in the region of the replication origin of the Bacillus subtilis chromosome. Nucleic Acids Res 11:6301–6318

    Google Scholar 

  • Panganiban AT, Whiteley HR (1983) Purification of a new Bacillus subtilis RNA processing enzyme. J Biol Chem 258:12487–12493

    Google Scholar 

  • Razin S (1985) Molecular biology and genetics of mycoplasmas (Mollicutes). Microbiol Rev 49:419–455

    Google Scholar 

  • Rogers MJ, Simmons J, Walker RT, Weisburg WG, Woese CR, Tanner RS, Robinson IM, Stahl DA, Olsen G, Leach RH, Maniloff J (1985) Construction of the mycoplasma evolutionary tree from 5S rRNA sequence data. Proc Natl Acad Sci USA 82:1160–1164

    Google Scholar 

  • Rosenberg M, Court D (1979) Regulatory sequences involved in the promotion and termination of RNA transcription. Annu Rev Genet 13:319–353

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Google Scholar 

  • Sawada M, Muto A, Iwami M, Yamao F, Osawa S (1984) Organization of ribosomal RNA genes in Mycoplasma capricolum. Mol Gen Genet 196:311–316

    Google Scholar 

  • Sollner-Webb B, Reeder RH (1979) The nucleotide sequence of the initiation and termination sites for ribosomal RNA transcription in Xenopus laevis. Cell 18:485–499

    Google Scholar 

  • Sprague KU, Steitz JA, Genley RM, Stocking CE (1977) 3′terminal sequences of 16S rRNA do not explain translational specificity differences between E. coli and B. stearothermophilus ribosomes. Nature 267:462–465

    Google Scholar 

  • Steitz JA (1979) Genetic signals and nucleotide sequence in messenger RNA. In: Goldberg RF (ed) Biological regulation and development, I. Gene expression. Plenum Press, New York, pp 349–389

    Google Scholar 

  • Taschke C (1985) Genexpression bei Mycoplasma hyopneumoniae. Diplomarbeit, Universität Heidelberg

  • Taschke C, Klinkert MQ, Wolters J, Herrmann R (1986) Organization of the ribosomal RNA genes in Mycoplasma hyopneumoniae: The 5S rRNA gene is separated from the 16S and 23S rRNA genes. Mol Gen Genet 205:428–433

    Google Scholar 

  • Young RA, Steitz JA (1978) Complementary sequences 1700 nucleotides apart form a ribonuclease cleavage site in E. coli ribosomal precursor RNA. Proc Natl Acad Sci USA 75:3593–3597

    Google Scholar 

  • Young RA, Steitz JA (1979) Tandem promoters direct E. coli ribosomal synthesis. Cell 17:225–234

    Google Scholar 

  • Woese CR, Maniloff J, Zablen LB (1980) Phylogenetic analysis of the mycoplasmas. Proc Natl Acad Sci USA 77:494–498

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. Lengeler

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taschke, C., Herrmann, R. Analysis of transcription and processing signals of the 16S–23S rRNA operon of Mycoplasma hyopneumoniae . Mol Gen Genet 205, 434–441 (1986). https://doi.org/10.1007/BF00338079

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00338079

Key words

Navigation