Advertisement

Molecular and General Genetics MGG

, Volume 105, Issue 3, pp 243–261 | Cite as

Studies on the functions of the RNA polymerase components by means of mutations

  • R. B. Khesin
  • Zh. M. Gorlenko
  • M. F. Shemyakin
  • S. L. Stvolinsky
  • S. Z. Mindlin
  • T. S. Ilyina
Article

Summary

It had been shown earlier, that RNA polymerase 13 S particles contain the large components with a molecular weight of about 3–105 and small subunits with a molecular weight of 4·104-1·105. These polymerase components easily dissociate and reassociate with restoration of the enzyme activity.

Both temperature-sensitive (tsX) and rifamycin-resistant (rif-r-I) mutations proved to affect the large polymerase component without changing the small subunits. These mutations were mapped at different, though closely linked, loci of metB-thi region of E. coli K12 chromosome. These results as well as certain literature data allow to conclude that the large RNA polymerase component consists of at least two polypeptides, one being altered by ts mutation, and the other—by rif-r mutation.

The large polymerase component when separated from the small subunits retain the ability to bind to T2 phage DNA while the separate small subunits lack this property. Rifamycin does not affect RNA polymerase-T2 DNA binding while ts mutation leads to inability of the enzyme to form stable complexes with DNA. Therefore, it is likely that the polypeptide affected by ts mutation is responsible for the attachment of RNA polymerase to specific sites of DNA template. On the other hand, the small subunits as well as polypeptide of the large component, which determines RNA polymerase sensitivity to rifamycin, seem not to participate in the enzyme binding to DNA template. It is suggested, that the catalytic site of RNA polymerase is located in the large component and formed by rifamycin-binding polypeptide. The small subunits are supposed to have regulatory function and activate the large components.

Keywords

Enzyme Polypeptide Stable Complex Catalytic Site Small Subunit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Babinet, C., Condamine, H.: Mutants résistants à la rifampicine, modifiés dans leur DNA-RNA-polymerase. C. R. Acad. Sci. (Paris) 267, 231–232 (1968).Google Scholar
  2. Bautz, E. K. F., Dunn, J. J.: DNA-dependent RNA polymerase from phage T4 infected E. coli: an enzyme missing a factor required for transcription of T4 DNA. Biochem. Biphys. Res. Commun. 34, 230–237 (1969).Google Scholar
  3. Berg, D., Barrett, K., Hinkle, D., McGrath, J., Chamberlin, M.: A subunit of RNA polymerase involved in chain initiation. Fed. Proc. 28, 659 (1969).Google Scholar
  4. Bogdanova, E. S., Zograf, Yu. N., Bass, I. A., Goldfarb, A. D.: RNA polymerase from uninfected and phage infected cells of E. coli. Symp. “Structure and genetic functions of biopolymers”, Publ. by Kurchatov Institute of Atomic Energy, Moscow 1969.Google Scholar
  5. Bremer, H., Konrad, M., Bruner, R.: Capacity of T4 DNA to serve as template for purified Escherichia coli RNA polymerase. J. molec. Biol. 16, 104–117 (1966).Google Scholar
  6. Burgess, R. R., Travers, A. A., Dunn, J. J., Bautz, E. K. F.: Factor stimulating transcription by RNA polymerase. Nature (Lond.) 221, 43–46 (1969).Google Scholar
  7. Cohen, S. N., Maitra, U., Hurwitz, J.: Role of DNA in RNA synthesis. XI. Selective transcription of λ DNA segments in vitro by RNA polymerase of Escherichia coli. J. molec. Biol. 26, 19–38 (1967).Google Scholar
  8. Colvill, A. J., Kanner, L. C., Tocchini-Valentini, G. P., Sarnat, M. T., Geiduschek, E. P.: Asymmetric RNA synthesis in vitro: heterologus DNA-enzyme systems. Proc. nat. Acad. Sci. (Wash.) 53, 1140 (1965).Google Scholar
  9. Crawford, L. V., Crawford, E. M., Richardson, J. P., Slayter, H. S.: The binding of RNA polymerase to polyoma and papilloma DNA. J. molec. Biol. 14, 593–597 (1965).Google Scholar
  10. Ezekiel, D. H., Hutchins, J. E.: Mutations affecting RNA polymerase associated with rifampicin resistance in Escherichia coli. Nature (Lond.) 220, 276–277 (1968).Google Scholar
  11. Geiduschek, E. P., Snyder, L., Colvill,A. J., Sarnat, M.: Selective synthesis of T-even bacteriophage early messenger in vitro. J. molec. Biol. 19, 541 (1966).Google Scholar
  12. Igarshi, K., Yura, T.: The role of RNA polymerase in genetic transcription. Biochem. biophys. Res. Commun. 34, 65–69 (1969).Google Scholar
  13. Ishihama, A., Hurwitz, J.: Alteration and reversible dissociation of E. coli RNA polymerase. Fed. Proc. 28, 659 (1969).Google Scholar
  14. Jones, O. W., Berg, P.: Studies on the binding of RNA polymerase to polynucleotides. J. molec. Biol. 22, 199–209 (1966).Google Scholar
  15. Kamsolova, S. G., Manyakov, V. F., Kisselev, N. A., Shemyakin, M. F., Astaurova, O. B., Khesin, R. B.: Studies on complexes between RNA polymerase and DNA. Molec. Biologia 3, 74–87 (1969).Google Scholar
  16. Khesin, R. B., Mindlin, S. Z., Gorlenko, Zh. M., Ilyina, T. S.: Temperature sensitive mutations affecting RNA synthesis in Escherichia coli. Molec. Gen. Genetics 103, 194–208 (1968).Google Scholar
  17. —, Shemyakin, M. F., Gorlenko, Zh. M., Bogdanova, S. L., Afanasieva, T. P.: RNA polymerase in E. coli cell infected with T2 phage. Biochimiya 27, 1092–1105 (1962).Google Scholar
  18. — Mindlin, S. Z., Ilyina, T. S.: Studies on the RNA polymerase of Escherichia coli K12 with use of mutation affecting its activity. Molec. Biologia 2, 898–907 (1968).Google Scholar
  19. —: Studies on the RNA polymerase in Escherichia coli K12 using the mutation affecting its activity. J. molec. Biol. 42, 401–411 (1969).Google Scholar
  20. Lennox, C. S.: Transduction of linked genetic characters of the host by bacteriophage P1. Virology 1, 190–206 (1955).Google Scholar
  21. Mauro, E. di, Snyder, L., Marino, P., Lamberti, A., Coppo, A., Tocchini-Valentini, G. P.: Rifampicin sensitivity of the components of DNA-dependent RNA polymerase. Nature (Lond.) 222, 533–537 (1969).Google Scholar
  22. Neuhoff, V., Schill, W. B., Sternbach, H.: Mikro-disk-elektrophoretische Analyse reiner DNA-abhängiger RNA-Polymerase aus Escherichia coli, III. Differenzierung zwischen Syntheseort und Bindungsort für die Matrize. Hoppe-Seylers Z. physiol. Chem. 350, 335–340 (1969).Google Scholar
  23. Richardson, J. P.: The binding of RNA polymerase to DNA. J. molec. Biol. 21, 83–112 (1966).Google Scholar
  24. Satoshi, M., Hisaji, W., Kazuo, N., Hamao, U.: Inhibition of DNA-dependent RNA polymerase reaction of Escherichia coli by an antimicrobial antibiotic, streptovaricin. Biochim. biophys. Acta (Amst.), 157, 322–332 (1968).Google Scholar
  25. Shemyakin, M. F., Manyakov, V. F., Kisselev, N. A., Khesin, R. B.: Synthesis of RNA on both strands of depolymerized DNA. Biochimiya 31, 594–604 (1966).Google Scholar
  26. Sippel, A., Hartmann, G.: Mode of action of rifamycin on the RNA polymerase reaction. Biochim. biophys. Acta (Amst.) 157, 218–219 (1968).Google Scholar
  27. Snyder, L., Geiduschek, E. P.: In vitro synthesis of T4 late messenger RNA. Proc. nat. Acad. Sci. (Wash.) 59, 459–466 (1968).Google Scholar
  28. Tocchini-Valentini, G. P., Marino, P., Colvill, A. J.: A mutant of E. coli containing an altered DNA-dependent RNA polymerase. Nature (Lond.) 220, 275–276 (1968).Google Scholar
  29. Travers, A. A., Burgess, R. R.: Cyclic re-use of the RNA polymerase sigma factor. Nature (Lond.) 222, 537–540 (1969).Google Scholar
  30. Wehrli, W., Knüsel, F., Schmid, K., Staehelin, M.: Interaction of rifamycin with bacterial RNA polymerase. Proc. nat. Acad. Sci. (Wash.) 61, 667–673 (1968).Google Scholar
  31. Wu, C. W.: Initiation by the RNA polymerase. Fed. Proc. 28, 659 (1969).Google Scholar
  32. Yura, T., Igarashi, K.: RNA polymerase mutants of Escherichia coli, I. Mutants resistant to streptovaricin. Proc. nat. Acad. Sci. (Wash.) 61, 1313–1319 (1968).Google Scholar

Copyright information

© Springer-Verlag 1969

Authors and Affiliations

  • R. B. Khesin
    • 1
  • Zh. M. Gorlenko
    • 1
  • M. F. Shemyakin
    • 1
  • S. L. Stvolinsky
    • 1
  • S. Z. Mindlin
    • 1
  • T. S. Ilyina
    • 1
  1. 1.Kurchatov Institute of Atomic EnergyMoscowUSSR

Personalised recommendations