Skip to main content
Log in

A theory for the acquisition and loss of neuron specificity in visual cortex

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

We assume that between lateral geniculate and visual cortical cells there exist labile synapses that modify themselves in a new fashion called threshold passive modification and in addition, non-labile synapses that contain permanent information. In the theory which results there is an increase in the specificity of response of a cortical cell when it is exposed to stimuli due to normal patterned visual experience. Non-patterned input, such as might be expected when an animal is dark-reared or raised with eyelids sutured, results in a loss of specificity, with details depending on whether noise to labile and non-labile junctions is correlated. Specificity can sometimes be regained, however, with a return of input due to patterned vision. We propose that this provides a possible explanation of experimental results obtained by Imbert and Buisseret (1975); Blakemore and Van Sluyters (1975); Buisseret and Imbert (1976); and Frégnac and Imbert (1977, 1978).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, J.A.: Two models for memory organization using interacting traces. Math. Biosci. 8, 137–160 (1970)

    Google Scholar 

  • Anderson, J.A.: A simple neural network generating an interactive memory. Math. Biosci. 14, 197–220 (1972)

    Google Scholar 

  • Anderson, J.A., Silverstein, J.W., Ritz, S.A., Jones, R.S.: Distinctive features, categorical perception, and probability learning. Some applications of a neural model. Psychoanal. Rev. 84, 413–451 (1977)

    Google Scholar 

  • Anderson, J.A., Cooper, L.N.: Les modeles mathematiques de l'organization biologique de la memoire. Plurisci. 168–175 (1978)

  • Batini, C., Buisseret, P.: Sensory peripheral pathway from extrinsic eye muscles. Arch. Ital. Biol. 112, 18–32 (1974)

    Google Scholar 

  • Bienenstock, E., Frégnac, Y.: Stability of response of single cells in kittens visual cortex. (to be published)

  • Blakemore, C., Cooper, G.F.: Development of the brain depends on the visual environment. Nature 228, 477–478 (1970)

    Google Scholar 

  • Blakemore, C., Mitchell, D.E.: Environmental modification of the visual cortex and the neural basis of learning and memory. Nature 241, 467–468 (1973)

    Google Scholar 

  • Blakemore, C., Van Sluyters, R.C.: Reversal of the Physiological effects of monocular deprivation in kittens. Further evidence for a sensitive period. J. Physiol. (London) 237, 195–216 (1974)

    Google Scholar 

  • Blakemore, C., Van Sluyters, R.C.: Innate and environmental factors in the development of the kitten's visual cortex. J. Physiol. (London) 248, 663–716 (1975)

    Google Scholar 

  • Buisseret, P., Imbert, M.: Visual cortical cells. Their developmental properties in normal and dark reared kittens. J. Physiol. (London) 255, 511–525 (1976)

    Google Scholar 

  • Buisseret, P., Gary-Bobo, E., Imbert, M.: Ocular motility and recovery of orientational properties of visual cortical neurons in dark-reared kittens. Nature 272, 816–817 (1978)

    Google Scholar 

  • Cooper, L.N.: A Possible organization of animal memory and learning. In: Proceedings of the Nobel Symposium on Collective Properties of Physical Systems. Lundquist, B., Lundquist, S., eds. London, New York 24, 252–264 (1973)

  • Frégnac, Y., Imbert, M.: Cinetique de developement des cellules du cortex visuel. J. Physiol. (Paris) 6, T.73 (1977)

    Google Scholar 

  • Frégnac, Y., Imbert, M.: Early development of visual cortical cells in normal and dark-reared kittens. Relationship between orientation selectivity and ocular dominance. J. Physiol. (London) 278, 27–44 (1978)

    Google Scholar 

  • Frégnac, Y.: Cinetique de development du cortex visuel primaire chez le chat. Effets de la privation visuelle binoculaire et modele de maturation de la selective a l'orientation. Doctoral thesis, Université René Descartes (1978)

  • Hebb, D.O.: The organization of behavior. New York. Wiley 1949

    Google Scholar 

  • Henry, G.H., Dreher, B., Bishop, P.O.: Orientation specificity of cells in cat striate cortex. J. Neurophysiol. 137, 1394–1409 (1974)

    Google Scholar 

  • Herz, A., Creutzfeldt, O., Fuster, J.: Statistische Eigenschaften der Neuronaktivität im ascendierenden visuellen System. Kybernetik 2, 61–71 (1964)

    Google Scholar 

  • Hirsch, H.V.B., Spinelli, D.N.: Modification of the distribution of receptive field orientation in cats by selective visual exposure during development. Exp. Brain Res. 12, 509–527 (1971)

    Google Scholar 

  • Hubel, D.H., Wiesel, T.N.: Receptive fields of single neurons in the cat striate cortex. J. Physiol. (London) 148, 574–591 (1959)

    Google Scholar 

  • Hubel, D.H., Wiesel, T.N.: Receptive fields binocular interaction and functional architecture in the cat's visual cortex. J. Physiol. (London) 160, 106–154 (1962)

    Google Scholar 

  • Imbert, M., Buisseret, P.: Receptive field characteristics and plastic properties of visual cortical cells in kittens reared with or without visual experience. Exp. Brain Res. 22, 2–36 (1975)

    Google Scholar 

  • Kaldel, E.R.: Cellular basis of behavior. San Francisco: Freeman 1976

    Google Scholar 

  • Kohonen, T.: Correlation matrix memories. IEEE Trans. Comput. C-21, 353–359 (1972)

    Google Scholar 

  • Kohonen, T.: Associative memory — a system-theoretical approach. Berlin, Heidelberg, New York: Springer 1977

    Google Scholar 

  • Kohonen, T., Oja, E.: Fast adaptive formation of orthogonalizing filters and associative memory in recurrent networks of neuron like elements. Biol. Cybernetics 21, 85–95 (1976)

    Google Scholar 

  • Kohonen, T., Lethiö, P., Rovamo, J., Hyvärinen, J., Bry, K., Vainio, L.: A principle of neural associative memory. Neuroscience 2, 1065–1076 (1977)

    Google Scholar 

  • Movshon, J.A.: Reversal of the physiological effects of monocular deprivation in the kittens visual cortex. J. Physiol. (London) 261, 125–174 (1976)

    Google Scholar 

  • Nass, M., Cooper, L.N.: A theory for the development of feature detecting cells in visual cortex. Biol. Cybernetics 19, 1–18 (1975)

    Google Scholar 

  • Perez, R., Glass, L., Shlaer, R.J.: Development of specificity in the cat visual cortex. J. Math. Biol. 1, 275–288 (1975)

    Google Scholar 

  • Pettigrew, J.D., Freeman, R.D.: Visual experience without lines. Effects on developing cortical neurons. Science 182, 599–601 (1973)

    Google Scholar 

  • Pettgrew, J.D.: The effect of visual experience on the development of stimulus specificity by kitten cortical neurons. J. Physiol. 237, 49–74 (1974)

    Google Scholar 

  • Spear, P.D., Tong, L., Langsetmo, A.: Striate cortex neurons of binocularly deprived kittens respond to visual stimuli through the closed eyelids. Brain Res. 155, 141–146 (1978)

    Google Scholar 

  • von der Malsburg, C.: Self-organization of orientation sensitive cells in the striate cortex. Kybernetic 14, 85–100 (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported in part by a grant from the Ittleson Foundation, Inc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cooper, L.N., Liberman, F. & Oja, E. A theory for the acquisition and loss of neuron specificity in visual cortex. Biol. Cybernetics 33, 9–28 (1979). https://doi.org/10.1007/BF00337414

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00337414

Keywords

Navigation