Skip to main content
Log in

Why rods and cones?

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

A key problem in vision is to normalize one's lightness scale so that surface reflectances are always assigned the same gray value regardless of the illumination level. The solution requires an assessment of the relation between the strength of the illuminant and the strength of the image signal-information that is not available in the image alone. However, the level of scattered light in the optical system does provide an independent measure of the illuminant strength, and can be used to solve the lightness scale normalization problem. To do this requires a comparison between two imaging systems, each of which respond differently to the internal optical scatter. The rod and cone systems have properties that are ideally suited for such a role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aguilar, M., Stiles, W.S.: Saturation of rod mechanism of the retina at high light levels of stimulation. Opt. Acta 1, 59–65 (1954)

    Google Scholar 

  • Barlow, H.B.: Increment thresholds at low intensities considered as signal/noise discriminations. J. Physiol. 136, 469–488 (1957)

    Google Scholar 

  • Barlow, H.B.: Measurements of the quantum efficiency of discrimination in human scotopic vision. J. Physiol. 160, 169–188 (1962)

    Google Scholar 

  • Barlow, H.B., Sparrock, J.M.B.: The role of afterimages in dark adaptation. Science 144, 1309–1314 (1964)

    Google Scholar 

  • Blackwell, H.R., Blackwell, O.M.: Rod and cone receptor mechanisms in typical can atypical congenital achromatopsia. Vis. Res. 1, 62–107 (1961)

    Google Scholar 

  • Blick, D.W., MacLeod, D.I.A.: Rod threshold: influence of neighboring cones. Vis. Res. (in press)

  • Crawford, B.H.: Visual adaptation in relation to brief conditionning stimuli. Proc. R. Soc. London, Ser. B 134, 283–302 (1949)

    Google Scholar 

  • DeValois, R.L.: Analysis of response patterns of LGN cells. J. Opt. Soc. Am. 56, 966–677 (1966)

    Google Scholar 

  • DeVries, H.: The quantum character of light and its bearing upon threshold of vision, the differential sensitivity and visual acuity of the eye. Physica 10, 553–564 (1943)

    Google Scholar 

  • Enoch, J.M., Hope, G.M.: Directional sensitivity of the foveal and parafoveal retina. Invest. Ophthalmol 12, 497–503 (1973)

    Google Scholar 

  • Enoch, J.M., Laties, A.M.: An analysis of retinal receptor orientation. Invest. Ophthalmol. 10, 959 (1971)

    Google Scholar 

  • Fry, G.A., Alpern, M.: The effect of a peripheral glare source upon the apparent brightness of an object. J. Opt. Soc. Am. 43, 189–195 (1953)

    Google Scholar 

  • Fry, G.A., King, V.M.: The pupillary response and discomfort glare. J. Illum. Eng. Soc. 4, 307–324 (1975)

    Google Scholar 

  • Gouras, P.: Color opponency from fovea to striate cortex. Invest. Ophthalmol. 11, 427–433 (1972)

    Google Scholar 

  • Graham, C.H.: Vision and visual perception. New York: Wiley 1965

    Google Scholar 

  • Hallett, P.E.: Quantum efficiency and false positive rate. J. Physiol. 202, 421–436 (1969)

    Google Scholar 

  • Horn, B.K.P.: Obtaining shape from shading information. In: The psychology of computer vision. Winston, P.H. (ed.), p. 115. New York: McGraw-Hill 1975

    Google Scholar 

  • Hurvich, L.M., Jameson, D.: Some quantitative aspects of an opponent colors theory. J. Opt. Soc. Am. 45, 602–616 (1955)

    Google Scholar 

  • Jones, R.C.: Quantum efficiency of human vision. J. Opt. Soc. Am. 49, 645–653 (1959)

    Google Scholar 

  • Land, E.H.: The retinex. Am. Sci. 52, 247–264 (1964)

    Google Scholar 

  • Land, E.H., McCann, J.J.: Lightness and retinex theory. J. Opt. Soc. Am. 61, 1–11 (1971)

    Google Scholar 

  • Naka, K.J., Rushton, W.A.H.: S-potentials from colors within the retina of fish (Cyprinidae). J. Physiol. 185, 536–555 (1966)

    Google Scholar 

  • Laties, A.M.: Histological techniques for the study of receptor orientation. Tissue Cell 1, 63 (1968)

    Google Scholar 

  • LeGrand, Y.: Light, colour, and vision. London: Chapman & Hall 1968

    Google Scholar 

  • Makous, W., Boothe, R.: Cones block signals from rods. Vis. Res. 14, 285–294 (1974)

    Google Scholar 

  • McCann, J.J., Benton, J.L.: Interaction of long-wave cones and the rods to produce color sensations. J. Opt. Soc. Am 59, 103–107 (1969)

    Google Scholar 

  • Normann, R.A., Werblin, F.S.: Control of retinal sensitivity. I light and dark adaptation of vertebrate rods and cone. J. Gen. Physiol. 63, 37–61 (1974)

    Google Scholar 

  • Purkinje, J.: Beobachtungen und Versuche zur Physiologie der Sinne, Bd. 2. Berlin: Reiner 1825

    Google Scholar 

  • Rose, A.: The sensitivity performance of the human eye on an absolute scale. J. Opt. Soc. Am. 38, 196–208 (1942)

    Google Scholar 

  • Rushton, W.A.H.: The retinal organization of vision in vertebrates, p. 12. In: Biological receptor mechanisms. Symp. of Soc. Exp. Biol. XVI. Cambridge: University Press 1962

    Google Scholar 

  • Sakitt, B.: Psychophysical correlates of photoreceptor activity Vis. Res. 16, 129–140 (1976)

    Google Scholar 

  • Stevens, S.S.: Duration, luminance, and the brightness exponent. Percept. Psychophys. 1, 96–100 (1966)

    Google Scholar 

  • Stevens, J.C., Stevens, S.S.: Brightness function: effects of adaptation. J. Opt. Soc. Am. 53, 375–385 (1963)

    Google Scholar 

  • Stiles, W.S.: Color vision: the approach through increment thresh-old sensitivity. Proc. Nat. Acad. Sci. 45, 100–114 (1959)

    Google Scholar 

  • Stiles, W.S., Crawford, B.H.: The luminous efficiency of rays entering the eye pupil at different points. Proc. R. Soc. London. Ser. B 112, 428 (1933)

    Google Scholar 

  • Ullman, S.: On the visual detection of light sources. Biol. Cybernetics 21, 205–212 (1976)

    Google Scholar 

  • Meeteren, van, A.: On the detective quantum efficiency of the human eye. Vis. Res. 18, 257–267 (1978)

    Google Scholar 

  • Wald, G.: Human vision and the spectrum. Science 101, 653–658 (1945)

    Google Scholar 

  • Westheimer, G.: Dependence of the magnitude of the Stiles-Crawford effect on retinal location. J. Physiol. 192, 309 (1967)

    Google Scholar 

  • Wiesel, T., Hubel, D.H.: Spatial and chromatic interaction in the lateral geniculate body of the rhesus monkey. J. Neurophysiol. 29, 115 (1966)

    Google Scholar 

  • Williams, T.P., Gale, J.G.: Compression of retinal responsivity: V-logI functions and increment thresholds. Vis. Res. 18, 587–590 (1978)

    Google Scholar 

  • Woodham, R.J.: Reflectance map techniques for analyzing surface defects in metal castings. Massachusetts Institute of Technology report AI-TR-457, 1978 (available from the Artificial Intelligence Laboratory)

  • Wyszecki, G., Stiles, W.S.: Color science: concepts and methods, quantitative data, and formulas. New York: Wiley 1967

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richards, W. Why rods and cones?. Biol. Cybernetics 33, 125–135 (1979). https://doi.org/10.1007/BF00337290

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00337290

Keywords

Navigation