Skip to main content
Log in

A general myocybernetic control model of skeletal muscle

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

A general myocybernetic control model of skeletal muscle is presented which constitutes an extension, to general control modes, of a previously published control model. The restriction, in the previous model, to a constant number of stimulated motor units has been removed and the new model allows for both a varying number of stimulated motor units and a varying average stimulation rate. The general model is tested by comparing its predictions with experimental records of the force output of the quadriceps femoris muscle. It is found that the model correctly predicts the initial excitation-contraction delay, the dips in the force record, and several other contraction phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bahler, A.S., Fales, J.T., Zierler, K.L.: The active state of mammalian skeletal muscle. J. gen. Physiol. 50, 2239–2253 (1967)

    Google Scholar 

  • Briggs, F.N., Poland, J.L., Solaro, R.J.: Relative capabilities of sarcoplasmic reticulum in fast and slow mammalian skeletal muscles. J. Physiol. 266, 587–594 (1977)

    Google Scholar 

  • Calvert, T.W., Chapman, A.E.: The relationship between the surface EMG and force transients in muscle: simulation and experimental studies. Proc. IEEE 65, 682–689 (1977)

    Google Scholar 

  • Chow, C.K., Jacobson, D.H.: Studies of human locomotion via optimal programming. Math. Biosci. 10, 239–306 (1971)

    Google Scholar 

  • Coddington, E.A., Levinson, N.: Theory of ordinary differential equations (pp. 13–61). New York: McGraw-Hill 1955

    Google Scholar 

  • Desmedt, J.E., Godaux, E.: Ballistic contractions in man: characteristic recruitment pattern of single motor units of the tibialis anterior muscle. J. Physiol. 264, 673–693 (1977)

    Google Scholar 

  • Ebashi, S., Endo, M.: Calcium and muscle contraction. Progr. Biophys. 18, 123–183 (1968)

    Google Scholar 

  • Edman, K.A.P., Mulieri, L.A., Scubon-Mulieri, B.: Non-hyperbolic force-velocity relationship in single muscle fibres. Acta physiol. scand 98, 143–156 (1976)

    Google Scholar 

  • FitzHugh, R.: A model of optimal voluntary muscular control. J. Math. Biol. 4, 203–236 (1977)

    Google Scholar 

  • Gibbs, C.L., Gibson, W.R.: Energy production of rat soleus muscle. Amer. J. Physiol. 223, 864–871 (1972)

    Google Scholar 

  • Grimby, L., Hannerz, J.: Firing rate and recruitment order of toe extensor motor units in different modes of voluntary contraction. J. Physiol. 264, 865–879 (1977)

    Google Scholar 

  • Hatze, H.: The complete optimization of a human motion. Math. Biosci. 28, 99–135 (1976)

    Google Scholar 

  • Hatze, H.: A myocybernetic control model of skeletal muscle. Biol. Cybernetics 25, 103–119 (1977a)

    Google Scholar 

  • Hatze, H.: The relative contribution of motor unit recruitment and rate coding to the production of static isometric muscle force. Biol. Cybernetics 27, 21–25 (1977b)

    Google Scholar 

  • Hatze, H.: A teleological explanation of Weber's law and the motor unit size law. CSIR Special Report WISK 248 (1977c)

  • Hatze, H., Buys, J.D.: Energy-optimal controls in the mammalian neuromuscular system. Biol. Cybernetics 27, 9–20 (1977)

    Google Scholar 

  • Henneman, E.: Peripheral mechanisms involved in the control of muscle. In: Medical Physiology, pp. 1697–1716. Mountcastle, V.B., ed. St. Louis: Mosby 1968

    Google Scholar 

  • Henneman, E., Somjen, G., Carpenter, D.O.: Excitability and inhibitability of motoneurones of different sizes. J. Neurophysiol. 28, 597–620 (1965)

    Google Scholar 

  • Jewell, B.R., Wilkie, D.R.: The mechanical properties of relaxing muscle. J. Physiol. 152, 30–47 (1960)

    Google Scholar 

  • Jöbsis, F. F., O'Connor, M.J.: Calcium release and reabsorption in the sartorius muscle of the toad. Biochem. Biophys. Res. Commun. 25, 246–252 (1966)

    Google Scholar 

  • Julian, F.J.: The effect of calcium on the force-velocity relation of briefly glycerinated frog muscle fibres. J. Physiol. 218, 117–145 (1971)

    Google Scholar 

  • Kernell, D.: The limits of firing frequency in cat lumbosacral motoneurones possessing different time course of afterhyperpolarization. Acta physiol. scand. 65, 87–100 (1965)

    Google Scholar 

  • Milner-Brown, H.S., Stein, R.B., Yemm, R.: The orderly recruitment of human motor units during voluntary isometric contractions. J. Physiol. 230, 359–370 (1973)

    Google Scholar 

  • Person, R.S., Kudina, L.P.: Discharge frequency and discharge pattern of human motor units during voluntary contraction of muscle. Electroenceph clin. Neurophysiol. 32, 471–483 (1972)

    Google Scholar 

  • Smith, G.L.: Biomechanical analysis of knee flexion and extension. J. Biomechanics 6, 79–92 (1973)

    Google Scholar 

  • Stark, L.: Neurological control systems, p. 311. New York: Plenum Press 1968

    Google Scholar 

  • Thorstensson, A., Grimby, G. Karlsson, J.: Force-velocity relations and fiber composition in human knee extensor muscles. J. Appl. Physiol. 40, 12–16 (1976)

    Google Scholar 

  • Wendt, I.R., Gibbs, C.L.: Energy production of rat extensor digitorum longus muscle. Amer. J. Physiol. 224, 1081–1086 (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hatze, H. A general myocybernetic control model of skeletal muscle. Biol. Cybernetics 28, 143–157 (1978). https://doi.org/10.1007/BF00337136

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00337136

Keywords

Navigation