Skip to main content
Log in

A neural network model of the McCollough effect

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

A self-organizing, feature-extracting network (von der Malsburg, 1973) is extended to two feature dimensions to encompass line orientation and color. It is applied to McCollough effects, particularly longlasting, contingent-aftereffects. McCollough effects are thought to involve low-level associative memory in the form of synaptic modification. The McCollough-Malsburg Model (MMM) embodies positive synaptic modification with correlated firing of units in an input layer and an excitatory cortical layer. Computer simulation of MMM reproduces orientation-contingent color aftereffects. The model embodies many of the mechanisms thought to be operating in developmental plasticity, suggesting that equivalent mechanisms may be involved in adult long-term adaptation as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barlow, H.B., Sparrock, J.M.B.: Role of afterimages in dark adaptation. Science 144, 1309–1314, (1964)

    Google Scholar 

  • Blakemore, C., Campbell, F.W.: On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images. J. Physiol. 203, 237–260 (1969)

    Google Scholar 

  • Blakemore, C., Cooper, G.F.: Development of the brain depends on the visual environment. Nature 228 477–478 (1970)

    Google Scholar 

  • Blakemore, C., Nachmias, J.: The orientation of two visual after-effects. J. Physiol. 213, 157–174 (1971)

    Google Scholar 

  • Blakemore, C., Nachmias, J., Sutton, P.: The perceived spatial frequency shift: evidence for frequency selective neurones in the human brain. J. Physiol. 210, 727–750 (1970)

    Google Scholar 

  • Blakemore, C., Sutton, P.: Size adaptation: a new aftereffect. Science 166, 245–247 (1969)

    Google Scholar 

  • Creutzfeldt, O.D.: Some neurophysiological considerations concerning “memory”. In: Memory and transfer of information. Ed.: Zippel, H.P. New York: Plenum 1973

    Google Scholar 

  • Creutzfeldt, O.D., Heggelund, P.: Neural plasticity in visual cortex of adult cats after exposure to visual patterns. Science 188, 1024–1027 (1975)

    Google Scholar 

  • DeValois, R.L.: Central mechanisms of color vision. In: Handbook of sensory physiology 7, Part 3A. Ed.: Jung, R. Berlin-Heidelberg-New York: Springer 1973

    Google Scholar 

  • DeValois, R.L., Abramov, I., Jacobs, G.H.: Analysis of response patterns of LGN cells. J. Opt. Soc. Amer. 56, 966–977 (1966)

    Google Scholar 

  • DeValois, R.L., Walraven, J.: Monocular and binocular aftereffects of chromatic adaptation. Science 155, 463–465 (1967)

    Google Scholar 

  • Dow, B.M., Gouras, P.: Color and spatial specificity of single units in rhesus-monkey foveal striate cortex. J. Neurophysiol. 36, 79–100 (1973)

    Google Scholar 

  • Evans, C.R., Robertson, A.D.J.: Prolonged excitation in the visual cortex of the cat. Science 150, 913–915, (1965)

    Google Scholar 

  • Freeman, R.D., Mitchell, D.E., Millodot, M.: The neural effect of partial visual deprivation in humans. Science 175, 1384–1386 (1972)

    Google Scholar 

  • Gestrin, P.J., Teller, D.Y.: Interocular hue shifts and pressure blindness. Vision Res. 9, 1261–1271 (1969)

    Google Scholar 

  • Gilinsky, A.S., Doherty, R.S.: Interocular transfer of orientational effects. Science 164, 454–455 (1969)

    Google Scholar 

  • Gouras, P.: Color sensitive cells in monkeys striate cortex. Fed. Proc. 29, A838 (1960a)

  • Gouras, P.: Trichromatic mechanisms in single cortical neurons. Science 168, 489–491 (1970b)

    Google Scholar 

  • Gouras, P.: Opponent-color cells in different layers of foveal striate cortex. J. Physiol. 238, 583–602 (1974)

    Google Scholar 

  • Grossberg, S.: Some networks that can learn, remember, and reproduce any number of complicated space-time patterns, II. Stud. Appl. Math. 49, 135–166 (1970)

    Google Scholar 

  • Grossberg, S.: Contour enhancement, short term memory, and constancies in reverberating neural networks. Stud. Appl. Math. 52, 213–257 (1973)

    Google Scholar 

  • Grossberg, S.: Classical and instrumental learning by neural networks. In: Progress in theoretical biology. pp. 51–141. Eds.: Rosen, R., Snell, F., New York: Academic Press 1974

    Google Scholar 

  • Grossberg, S.: On the development of feature detectors in the visual cortex with applications to learning and reaction-diffusion systems. Biol. Cybernetics 21, 145–159 (1976)

    Google Scholar 

  • Held, R., Shattuck, S.R.: Color- and edge-sensitive channels in the human visual system: tuning for orientation. Science 174, 314–316 (1971)

    Google Scholar 

  • Harris, C.S.: Effect of viewing distance on a color aftereffect specific to spatial frequency. Psychonomic Sci 21, 350 (1970)

    Google Scholar 

  • Harris, C.S.: Orientation-specific color aftereffects dependent on retinal spatial frequency rather than stripe width. J. Opt. Soc. Amer. 61, 689 (1971)

    Google Scholar 

  • Harris, C.S.: Extremely long-lasting shifts in perception of size after adaptation to gratings. Paper presented at the Canadian Psychological Association Meeting, Toronto, Canada, June 1976

  • Harris, C.S., Gibson, A.R.: Is orientation-specific color adaptation in human vision due to edge detectors, afterimages, or “dipoles”? Science 162, 1506–1507 (1968)

    Google Scholar 

  • Hebb, D.O.: Organization of behavior. New York: John Wiley 1949

    Google Scholar 

  • Hepler, N.: Color: a motion contigent aftereffect. Science 162, 376–377 (1968)

    Google Scholar 

  • Hirsch, H.V.B., Spinelli, D.N.: Visual experience modifies distribution of horizontally and vertically oriented receptive fields in cats. Science 168, 869–871 (1970)

    Google Scholar 

  • Hirsch, H.V.B., Spinelli, D.N.: Modification of the distribution of receptive field orientation in cats by selective visual exposure during development. Exp. Brain Res. 13, 509–527 (1971)

    Google Scholar 

  • Kohler, I.: Experiments with goggles. Sci. Amer. 206, 62–72 (1962)

    Google Scholar 

  • Kohler, I.: The formation and transformation of the perceptual world. Psychol. Monogr. 3, 12 (1964)

    Google Scholar 

  • Leppmann, P.K. Spatial frequency dependent chromatic aftereffects. Nature 242, 411–412 (1973)

    Google Scholar 

  • Lovegrove, W.J., Over, R.: Colour selectivity in orientation masking and aftereffect. Vision Res. 13, 895–902 (1973)

    Google Scholar 

  • Lovegrove, W.J., Over, R., Broerse, J.: Color selectivity in motion aftereffect. Nature 238, 334–335 (1972)

    Google Scholar 

  • MacKay, D.M., MacKay, V.: Orientation-sensitive aftereffects of dichoptically presented colour and form. Nature 242, 477–479 (1973)

    Google Scholar 

  • MacKay, D.M., MacKay, V.: What causes decay of patterncontingent chromatic aftereffects. Vision Res. 15, 462–464 (1975)

    Google Scholar 

  • Maudarbocus, A.Y., Ruddock, K.H.: The influence of wavelength on visual adaptation to spatially periodic stimuli. Vision Res. 13, 993–998 (1973)

    Google Scholar 

  • Mayhew, J.E.W., Anstis, S.M.: Movement aftereffects contigent on color, intensity and pattern. Percept. Psychophys. 12, 77–85 (1972)

    Google Scholar 

  • McCollough, C.: Color adaptation of edge detectors in the human visual system. Science 149, 1115–1116 (1965)

    Google Scholar 

  • Metzler, J., Spinelli, D.N.: Behavioral correlates of physiological changes produced in the activity of single units in the visual cortex of adult cats by restricted, prolonged visual experience. Brain Res. in preparation (1976)

  • Montalvo, F.S.: Aftereffects, adaptation and plasticity: a neural model for tunable feature space. Ph. D. Dissertation. Technical Report 76-4, Computer and Information Science Department, University of Massachusetts, Amherst MA 01002, USA, 1976

  • Murch, G.M.: Binocular relationships in size and color orientation specific aftereffect. J. Exp. Psychol. 93, 30–34 (1972)

    Google Scholar 

  • Over, R., Long, N., Lovegrove, W.: Absence of binocular interaction between spatial and color attributes of visual stimuli. Percept. Psychophys. 13, 534–540 (1973)

    Google Scholar 

  • Riggs, L.A., White, K.D., Eimas, P.D.: Establishment and decay of orientation-contingent aftereffects of color. Percept. Psychophys. 16, 535–542 (1974)

    Google Scholar 

  • Skowbo, D., Gentry, T., Timney, B., Morant, R.B.: The McCollough effect: influence of several kinds of visual stimulation on decay rate. Percept. Psychophys. 16, 47–49 (1974)

    Google Scholar 

  • Skowbo, D., Timney, B.N., Gentry, T.A., Morant, R.B.: McCollough effects: experimental findings and theoretical accounts. Psychol. Bull. 82, 497–510 (1975)

    Google Scholar 

  • Spinelli, D.N., Hirsch, H.V.B., Phelps, R.W., Metzler, J.: Visual experience as a determinant of the response characteristics of cortical receptive fields in cats. Exp. Brain Res. 15, 289–304 (1972)

    Google Scholar 

  • Spinelli, D.N., Metzler, J.: The effect of restricted, prolonged visual experience on the activity of single units in the visual cortex of adult cats. Brain Res. in preparation (1976)

  • Stromeyer, C.F.: Further studies of the McCollough effect. Percept. Psychophys. 6, 105–110 (1969)

    Google Scholar 

  • Stromeyer, C.F.: Edge-contingent color aftereffects: spatial frequency specificity. Vision Res. 12, 717–733 (1972a)

    Google Scholar 

  • Stromeyer, C.F.: Contour-contingent color aftereffects: retinal area specificity. Amer. J. Psychol. 85, 227–235 (1972b)

    Google Scholar 

  • Stromeyer, C.F., Julesz, B.: Spatial frequency masking in vision: critical bands and spread of masking. J. Opt. Soc. Amer. 62, 1221–1232 (1972)

    Google Scholar 

  • Stromeyer, C.F., Mansfield, R.J.W.: Colored aftereffects produced with moving edges. Percept. Psychophys. 7, 108–114 (1970)

    Google Scholar 

  • Teft, L.W., Clark, F.T.: The effects of stimulus density on orientation specific aftereffects of color adaptation. Psychonom. Sci. 11, 265–266 (1968)

    Google Scholar 

  • Timney, B.N., Gentry, T.A., Skowbo, D., Morant, R.B.: Chromatic gratings, thresholds and the McCollough effect. Vision Res. 14, 1033–1035 (1974)

    Google Scholar 

  • von der Malsburg, C.: Self-organization of orientation sensitive cells in the striate cortex. Kybernetik 14, 85–100 (1973)

    Google Scholar 

  • White, K.D.: Binocular rivalry during establishment of orientation-contigent color aftereffects. Paper presented at the Canadian Psychological Association, Toronto, Canada, June 1976

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported in part by NIH Grant No. 5 R01 NS09755-4 COM of the National Institute of Neurological Diseases and Stroke (M.A. Arbib, Principal Investigator)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montalvo, F.S. A neural network model of the McCollough effect. Biol. Cybernetics 25, 49–56 (1976). https://doi.org/10.1007/BF00337048

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00337048

Keywords

Navigation