Skip to main content
Log in

Normalizing transformations for dead-time-modified Poisson counting distributions

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Approximate normalizing transformations are derived for Poisson counting systems affected by nonparalyzable and paralyzable dead time. In the nonparalyzable case the transformation takes the form of a simple inverse hyperbolic function whereas in the paralyzable case it is an inverse trigonometric function. The results are expected to find use in neural counting, photon counting, and nuclear counting, as well as in queuing theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albert GE, Nelson L (1953) Contributions to the statistical theory of counter data. Ann Math Stat 24:9–22

    Google Scholar 

  • Anscombe FJ (1948) The transformation of Poisson, binomial and negative binomial data. Biometrika 35:246–254

    Google Scholar 

  • Bartlett MS (1936) The square-root transformation in the analysis of variance. J R Stat Soc Suppl 3:68–78

    Google Scholar 

  • Bédard G (1967) Dead-time corrections to the statistical distribution of photoelectrons. Proc Phys Soc (Lond) 90:131–141

    Google Scholar 

  • Cantor BI, Teich MC (1975) Dead-time-corrected photocounting distributions for laser radiation. J Opt Soc Am 65:786–791

    Google Scholar 

  • Cochran WG (1940) The analysis of variance when experimental errors follow the Poisson or binomial laws. Ann Math Stat 9:335–347

    Google Scholar 

  • Cox DR (1962) Renewal theory. Methuen, London

    Google Scholar 

  • Curtiss JH (1943) On transformations used in the analysis of variance. Ann Math Stat 14:107–122

    Google Scholar 

  • DeLotto I, Manfredi PF, Principi P (1964) Counting statistics and dead-time losses, Part 1. Energ Nucl (Milan) 11:557–564

    Google Scholar 

  • Dwight HB (1961) Tables of integrals and other mathematical data. 4th ed. Macmillan, New York

    Google Scholar 

  • Feller W (1948) On probability problems in the theory of counters. In: Studies and essays: a volume for the anniversary of courant. Wiley, New York, pp 105–115

    Google Scholar 

  • Freeman MF, Tukey JW (1950) Transformations related to the angular and square root. Ann Math Stat 21:607–611

    Google Scholar 

  • Kendall MG, Stuart A (1966) The advanced theory of statistics, vol. 3. Hafner, New York, pp 88–94

    Google Scholar 

  • Lachs G, Al-Shaikh R, Bi Q, Saia RA, Teich MC (1984) A neuralcounting model based on physiological characteristics of the peripheral auditory system. V. Application to loudness estimation and intensity discrimination. IEEE Trans SMC-14:819–836

    Google Scholar 

  • Libert J (1976) Comparaison des distributions statistiques de comptage des systèmes radioactifs. Nucl Instrum Methods 136:563–568

    Google Scholar 

  • Mattick ATR, McClemont J, Irwin JO (1935) The plate count of milk. Dairy Res 6:130–147

    Google Scholar 

  • Mueller, CG (1954) A quantitative theory of visual excitation for the single photoreceptor. Proc Natl Acad Sci USA 40:853–863

    Google Scholar 

  • Müller JW (1973) Dead-time problems. Nucl Instrum Methods 112:47–57

    Google Scholar 

  • Müller JW (1974) Some formulae for a dead-time-distorted Poisson process. Nucl Instrum Methods 117:401–404

    Google Scholar 

  • Müller JW (ed) (1981) Bibliography on dead time effects. Report BIP M-81/11. Bureau International des Poids et Mesures, Sèvres, France

    Google Scholar 

  • Parzen E (1962) Stochastic processes. Holden-Day, San Francisco, pp 117–186

    Google Scholar 

  • Prucnal PR (1980) Receiver performance evaluation using photocounting cumulants with application to atmospheric turbulence. Appl Opt 19:3611–3616

    Google Scholar 

  • Prucnal PR, Saleh BEA (1981) Transformation of imagesignal-dependent noise into image-signal-independent noise. Opt Lett 6:316–318

    Google Scholar 

  • Prucnal PR, Teich MC (1980) An increment threshold law for stimuli of arbitrary statistics. J Math Psychol 21:168–177

    Google Scholar 

  • Prucnal PR, Teich MC (1982) Multiplication noise in the human visual system at threshold. 2. Probit estimation of parameters. Biol Cybern 43:87–96

    Google Scholar 

  • Prucnal PR, Teich MC (1983) Refractory effects in neural counting processes with exponentially decaying rates. IEEE Trans SMC-13:1028–1033

    Google Scholar 

  • Ricciardi LM, Esposito F (1966) On some distribution functions for non-linear switching elements with finite dead time. Kybernetik (Biol Cybern) 3:148–152

    Google Scholar 

  • Saleh BEA (1978) Photoelectron statistics. Springer, Berlin Heidelberg New York, p 19

    Google Scholar 

  • Teich MC, Cantor BI (1978) Information, error, and imaging in deadtime-perturbed doubly-stochastic Poisson counting systems. IEEE J QE-14:993–1003

    Google Scholar 

  • Teich MC, Diament P (1980) Relative refractoriness in visual information processing. Biol Cybern 38:187–191

    Google Scholar 

  • Teich MC, Lachs G (1979) A neural counting model incorporating refractoriness and spread of excitation: I. Application to intensity discrimination. J Acoust Soc Am 66:1738–1749

    Google Scholar 

  • Teich MC, Lachs G (1983) A neural counting model incorporating refractoriness and spread of excitation: III. Application to intensity discrimination and loudness estimation for variable-bandwidth noise stimuli. Acustica 53:225–236

    Google Scholar 

  • Teich MC, Vannucci G (1978) Observation of dead-time-modified photocounting distributions for modulated laser radiation. J Opt Soc Am 68:1338–1342

    Google Scholar 

  • Teich MC, Matin L, Cantor BI (1978) Refractoriness in the maintained discharge of the cat's retinal ganglion cell. J Opt Soc Am 68:386–402

    Google Scholar 

  • Tukey JW (1957) On the comparative anatomy of transformations. Ann Math Stat 28:602–632

    Google Scholar 

  • Vannucci G, Teich MC (1979) Equivalence of threshold detection with and without dead time. Appl Opt 18:3886–3887

    Google Scholar 

  • Young ED, Barta PE (1985) Rate responses of auditory nerve fibers to tones in noise near masked threshold. J Acoust Soc Am (to be published)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teich, M.C. Normalizing transformations for dead-time-modified Poisson counting distributions. Biol. Cybern. 53, 121–124 (1985). https://doi.org/10.1007/BF00337028

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00337028

Keywords

Navigation