Skip to main content
Log in

Body movements and retinal pattern displacements while approaching a stationary object in the walking fly, Calliphora erythrocephala

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

When a walking fly approaches a stationary object two types of body movements are distinguishable. Type I body movements are characterized by low frequencies (0.4–1.3 Hz) and large amplitudes (28–65°). Superimposed on these movements are type II body movements which are characterized by high frequencies (7.3–10.6 Hz) and small amplitudes (5.9–8.2°) (Figs. 3–6; Table 1). Type II movements occur no matter whether the fly is fixating a pattern or orientating itself in homogeneous surroundings without any pattern. In contrast, only 72% of the flies with immobilized heads and 62% of the flies with movable heads make type I body movements. The amplitude of type I and type II body movements increases slightly after immobilization of the head. Binocular as well as monocular pattern projection occurs for the whole walking trajectory (Fig. 7–9). Monocular pattern projection seems to be more frequent in flies with immobilized heads than in those with movable heads. The degree of pattern fluctuations in the visual field of the flies increases slightly along the walking trajectory. Near the starting point in the centre of the arena it amounts to 5–7°, while at the end of the walking trajectory it amounts to 8–10° (Table 2). The following conclusions and hypothesis can be drawn from these experiments. 1. The graph BT for the direction of the fly's logitudinal axis can be approximated by the first derivative of the walking trajectory WT, that means, dWT(x)/dxBT(x) (Fig. 11). 2. The amplitudes of type II body movements are caused by the alternating movements of the legs during forward motion, while type I body movements are classified as exploring movements. During evolution of visually guided behaviour it is possible that blowflies have adapted their elementary movement detector system to type II body movements. 3. The types of pattern projection into the visual field of the fly while approaching an object can be explained by a simple neuronal network characterized by either inhibitory and/or excitatory influences of the visually activated neurones on the motor neurones generating the propulsive forces, that means the forward motion. In addition it is postulated that the large frontal and antero-lateral receptive fields of these neurones are not coupled with the motor centres on the same side of the body (Fig. 12).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, A.M.: Visual scanning in the honey bee. J. Comp. Physiol. 130, 173–182 (1979)

    Google Scholar 

  • Beersma, D.G.M., Stavenga, D.G., Kuiper, J.W.: Retinal lattice, visual field and binocularities in flies. Dependence on species and sex. J. Comp. Physiol. 119, 207–220 (1977)

    Google Scholar 

  • Bishop, P.O.: Neurophysiology of binocular single vision and stereopsis. In: Handbook of sensory physiology. Vol. VII/3A, p. 255–305. Berlin, Heidelberg, New York: Springer 1973

    Google Scholar 

  • Buchner, E.: Elementary movement detectors in an insect visual system. Biol. Cybern. 24, 85–101 (1976)

    Google Scholar 

  • Collett, T.S., Land, M.F.: Visual control of flight behaviour in the hoverfly, Syritta pipiens L. J. Comp. Physiol. 99, 1–66 (1975)

    Google Scholar 

  • Eckert, H.: Identifizierte, bewegungssensitive Interneurone als neurophysiologische Korrelate für das Bewegungssehen der Insekten. Verh. Dtsch. Zool. Ges. 69, 253 (1976)

    Google Scholar 

  • Eckert, H., Bishop, L.G.: Anatomical and physiological properties of the vertical cells in the third optic ganglion of Phaenicia sericata Diptera, Calliphoridae. J. Comp. Physiol. 126, 57–86 (1978)

    Google Scholar 

  • Geiger, Poggio, T.: On head and body movements of flying flies. Biol. Cybern. 25, 177–180 (1977)

    Google Scholar 

  • Graham, C.H.: Perception of movements. In: Vision and visual perception. Graham, C.H. (ed.), p. 575–588. New York, London, Sidney: Wiley & Sons 1965

    Google Scholar 

  • Hausen, K.: Funktion, Struktur und Konnektivität bewegungsempfindlicher Interneurone in der Lobula plate von Dipteren. Verh. Dtsch. Zool. Ges. 69, 254 (1976)

    Google Scholar 

  • Horn, E.: The mechanism of object fixation and its relation to spontaneous pattern preferences in Drosophila melanogaster. Biol. Cybern. 31, 145–158 (1978)

    Google Scholar 

  • Horn, E., Fischer, M.: Fixation-sensitive areas in the eyes of the walking fly, Calliphora erythrocephala. Biol. Cybern. 31, 158–162 (1978)

    Google Scholar 

  • Horn, E., Mittag, J.: Die Bedeutung des binocularen Sehraumes für die visuelle Objektfixation bei der freilaufenden Fliege, Calliphora erythrocephala. Verh. Dtsch. Zool. Ges. 72, 208 (1979)

    Google Scholar 

  • Horn, E., Wehner, R.: The mechanism of visual pattern fixation in the walking fly, Drosophila melanogaster. J. Comp. Physiol. 101, 39–56 (1975)

    Google Scholar 

  • Land, N.F.: Head movements of flies during visually guided flight. Nature (London) 243, 299–300 (1973)

    Google Scholar 

  • Land, M.F., Collett, T.S.: Chasing behaviour of houseflies (Fannia canicularis). J. Comp. Physiol. 89, 331–357 (1974)

    Google Scholar 

  • Noton, D.A.A.: A theory of visual pattern perception. IEEE Trans. Syst. Sci. Cybern. 6, 349–357 (1970)

    Google Scholar 

  • O'Shea, M., Williams, J.L.D.: The anatomy and output connection of a locust visual interneuron; the lobular giant movement detector (LGMD) neurone. J. Comp. Physiol. 91, 257–266 (1974)

    Google Scholar 

  • Pick, B.: Visual pattern discrimination as an element of the fly's orientation behaviour. Biol. Cybern. 23, 171–180 (1976)

    Google Scholar 

  • Reichardt, W.: Musterinduzierte Flugorientierung, Verhaltensversuche an der Fliege Musca domestica. Naturwissenschaften 60, 122–138 (1973)

    Google Scholar 

  • Reichardt, W., Poggio, T.: Visual control of orientation behaviour in the fly. Part I. A quantitative analysis. Q. Rev. Biophys. 9, 311–375 (1976)

    Google Scholar 

  • Sachs, L.: Angewandte Statistik. Berlin, Heidelberg, New York: Springer 1974

    Google Scholar 

  • Sandeman, D.G.: Eye-scanning during walking in the crab Leptograpsus variegatus. J. Comp. Physiol. 124, 249–257 (1978)

    Google Scholar 

  • Scharstein, H.: Wie steuern Insekten ihr Laufen im Dunkeln? Statistische Abhängigkeiten der Bahnparameter bei nachtaktiven Laufkäfern (Carabidae). In: Kybernetik '77. Hauske, G., Butenandt, F. (eds.), p. 384. München, Wien: Oldenburg 1977

    Google Scholar 

  • Strausfeld, N.J.: Atlas of an insect brain. Berlin, Heidelberg, New York: Springer 1976

    Google Scholar 

  • Virsik, R.P., Reichardt, W.: Detection and tracking of moving objects by the fly Musca domestica. Biol. Cybern. 23, 83–98 (1976)

    Google Scholar 

  • Wallace, G.K.: Visual scanning in the desert locust Schistocerca gregaria Forskål. J. Exp. Biol. 36, 512–525 (1959)

    Google Scholar 

  • Wehner, R.: Mustererkennung bei Insekten: Lokalisation und Identifikation visueller Objekte. Verh. Dtsch. Zool. Ges. 72, 19–41 (1979)

    Google Scholar 

  • Wendler, G.: Physiology and systems analysis of gravity orientation in two insects species (Carausius morosus, Calandra granaria). Fortschr. Zool. 23, 33–48 (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horn, E., Mittag, J. Body movements and retinal pattern displacements while approaching a stationary object in the walking fly, Calliphora erythrocephala . Biol. Cybern. 39, 67–77 (1980). https://doi.org/10.1007/BF00336946

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00336946

Keywords

Navigation