Skip to main content
Log in

The effect of forewing depressor activity on wing movement during locust flight

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Locusts are passively yawed in the laminar air current of a wind tunnel (Fig. 1). In order to study the influence of depressor muscles of the forewing on its movement, electromyography is combined with true 3-dimensional inductive forewing movement recording. In quick response to the yaw stimulus, many kinematic parameters (e.g. shape of the wing tip path, amplitudes of wingstroke, ratios of downstroke to upstroke duration, time interval between beginning of downstroke and time of maximum pronation etc.) vary differently in both forewings (Figs. 3–5). Pronation changes in correlation to yawing reciprocally on both forewings with comparable differences of pronation angles (Fig. 5a). Maximum pronation is decreased on that side, to which the animal is-passively-yawed, whereas the slope of the wing tip paths remains almost constant. Therefore, decreasing pronation most probably indicates increasing thrust. The animal appears to perform a disturbance avoidance behaviour. Although the burst length of muscle firing is almost constant here, the onset of 8 depressor muscles (1 st basalar and subalar muscles of all 4 wings) varies in correlation to the stimulus (Figs. 6–8). The changing time intervals between the 1 st basalar muscle M97 and subalar muscle M99 are responsible for the alterations of forewing downstroke. Quantitative analysis of combined motor and movement pattern (Fig. 9) shows the following: (i) the maximum pronation and time interval between the onset of 1 st basalar muscle M97 as well as subalar muscle M99 and the beginning of downstroke are positively correlated (Figs. 10 and 12a and b). (ii) Maximum pronation is greatest, when muscles M97 and M99 act simultaneously (Fig. 12c). Thus, both muscles work synergistically, concerning pronation. Muscle M99 is of less importance than muscle M97. On failing activity of the depressor muscle M97, downstroke is greatly reduced. Some depressor as well as elevator muscles are switched on and off separately on each side (Fig. 11).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander DE (1984) Unusual phase relationships between the forewings and hindwings in flying dragonflies. J Exp Biol 109:379–383

    Google Scholar 

  • Bacon J, Möhl B (1979) Activity of an identified wind interneurone on the flying locust. Nature 278:638–640

    Google Scholar 

  • Baker PS (1979a) The wing movements of flying locust during steering behaviour. J Comp Physiol A 131:49–58

    Google Scholar 

  • Baker PS (1979b) The role of forewing muscles in the control of direction in flying locusts. J Comp Physiol A 131:59–66

    Google Scholar 

  • Baker PS, Cooter RJ (1979) The natural flight in the migratory locust, Locusta migratoria L. Il. Gliding. J Comp Physiol A 131:89–94

    Google Scholar 

  • Dombrowski U, Wendler G (1987) Sensorik und Flugsteuerung bei einem Schmetterling (Manduca sexta L.). In: Elsner N, Creutzfeldt O (eds) New frontiers in brain research. Thieme, Stuttgart New York, p 47

    Google Scholar 

  • Dugard JJ (1967) Directional change in flying locusts. J Insect Physiol 13:1055–1063

    Google Scholar 

  • Ellington CP (1984) The aerodynamics of hovering insect flight. I–VI. Phil Trans R Soc Ser B 305:1–181

    Google Scholar 

  • Elson RC (1987) Flight motor neurone reflexes driven by strainsensitive wing mechanoreceptors in the locust. J Comp Physiol A 161:747–760

    Google Scholar 

  • Elson RC, Pflüger HJ (1986) The activity of a steering muscle in flying locusts. J Exp Biol 120:421–441

    Google Scholar 

  • Gewecke M (1975) The influence of the air-current sense organs on the flight behavior of Locusta migratoria. J Comp Physiol 103:79–95

    Google Scholar 

  • Götz KG (1983) Bewegungssehen und Flugsteuerung bei der Fliege Drosophila. In: Nachtigall W (ed) BIONA-Report, vol 2. Fischer, Stuttgart New York; Akad Wiss, Mainz, pp 21–34

    Google Scholar 

  • Götz KG (1987a) Course-control, metabolism and wing interference during ultralong tethered flight in drosophila melanogaster. J Exp Biol 128:35–46

    Google Scholar 

  • Götz KG (1987b) Relapse to “preprogrammed” visual flight-control in a muscular subsystem of the drosophila mutant “small optic lobes”. J Neurogenet 4:133–135

    Google Scholar 

  • Heide G (1983) Neural mechanisms of flight control in Diptera. In: Nachtigall W (ed) BIONA-Report, vol 2. Fischer, Stuttgart New York; Akad Wiss, Mainz, pp 35–52

    Google Scholar 

  • Heinzel HG, Gewecke M (1987) Aerodynamic and mechanical properties of the antennae as air-current sense organs in Locusta migratoria. II. Dynamic characteristics. J Comp Physiol A 161:671–680

    Google Scholar 

  • Horsmann U, Wendler G (1985) The role of a fast wing reflex in locust flight, In: Gewecke M, Wendler G (eds) Insect locomotion. Parey, Berlin Hamburg, pp 59–67

    Google Scholar 

  • Jensen M (1956) Biology and physics of locust flight. III. The aerodynamics of locust flight. Phil Trans R Soc Ser B 239:511–552

    Google Scholar 

  • Koch U (1977) A miniature movement detector applied to recording of wingbeat in locusta. Fortschr Zool 24 H2/3:327–332

    Google Scholar 

  • Koch UT, Elliott CJH (1983) Miniature angle detectors-principle and improved evaluation methods. In: Nachtigall W (ed) BIONA-Report, vol. 1. Fischer, Stuttgart New York, Akad Wiss, Mainz, pp 41–50

    Google Scholar 

  • Lemnitz G (1987) Yaw-Bewegungen durch optisch induzierte Steuermanöver beim Heuschreckenflug. In: Elsner N, Creutzfeld O (eds) New frontiers in brain research. Thieme, Stuttgart New York, p 49

    Google Scholar 

  • Mizisin AP, Josephson RK (1987) Mechanical power output of locust flight muscle. J Comp Physiol A 160:413–419

    Google Scholar 

  • Möhl B (1985a) The role of proprioception in locust flight control. I. Asymmetrie and coupling within the time pattern of motor units. J Comp Physiol A 156:93–101

    Google Scholar 

  • Möhl B (1985b) The role of proprioception in locust flight control. II. Information signalled by forewing stretch receptors during flight. J Comp Physiol A 156:103–116

    Google Scholar 

  • Möhl B, Neumann L (1983) Peripheral feedback-mechanisms in the locust flight system. In: Nachtigall W (ed) BIONA-Report, vol 2. Akad Wiss, Mainz; Fischer, Stuttgart New York, pp 81–104

    Google Scholar 

  • Möhl B, Zarnack W (1977a) Activity of the direct downstroke flight muscles of Locusta migratoria L. during steering behavior in flight. II. Dynamics of the time shift and changes in burst length. J Comp Physiol 118:235–247

    Google Scholar 

  • Möhl B, Zarnack W (1977b) Activity of direct downstroke flight muscles of the locust. Fortschr Zool 24 H2/3:333–339

    Google Scholar 

  • Nachtigall W (1966) Die Kinematik der Schlagflügelbewegung von Dipteren. Z Vergl Physiol 52:155–211

    Google Scholar 

  • Nachtigall W (1983) Untersuchungen zum Flug der Dipteren. Stationäre Luftkraftmessungen an Flügeln, Flügelbewegungen beim Steigflug und stationäre Meßgrößen beim Flug vor dem Windkanal. In: Nachtigall W (ed) BIONA-Report, vol 1. Parey, Berlin Hamburg, pp 51–60

    Google Scholar 

  • Neumann L (1985) Experiments on tegula for flight coordination in the locust. In: Gewecke M, Wendler G (eds) Insect locomotion. Akad Wiss, Mainz; Fischer, Stuttgart New York, pp 149–156

    Google Scholar 

  • Pearson KG, Wolf H (1987) Comparison of patterns in the intact and deafferented flight system of the locust. I. Electromyographic analysis. J Comp Physiol A 160:259–268

    Google Scholar 

  • Pfau HK (1977) Zur Morphologie und Funktion des Vorderflügels und Vorderflügelgelenks von Locusta migratoria L. Fortschr Zool 24 H2/3:341–345

    Google Scholar 

  • Pfau HK (1978) Funktionsanatomische Aspekte des Insektenflugs. Zool Jb Anat 99:99–108

    Google Scholar 

  • Pfau HK (1983) Mechanik und sensorische Kontrolle der Flügel-Pronation und-Supination. In: Nachtigall W (ed) BIONA-Report, vol 1. Akad Wiss, Mainz; Fischer, Stuttgart New York, pp 61–78

    Google Scholar 

  • Reuse G (1987) Der Einfluß der Flügelsenker auf die Flügelbewegungen bei Heuschrecken. Staatsarbeit FB Biologie Universität Göttingen, pp 1–68

  • Ronacher B (1987) Feldheuschrecken mit “gesplittetem” Mesothorakalganglion singen und fliegen normal. In: Elsner N, Creutzfeld O (eds) New frontiers in brain research. Theime, Stuttgart New York p 87

    Google Scholar 

  • Rowell HF, Pearson KG (1983) Ocellar input to the flight motor system of the locust: structure and function. J Exp Biol 103:265–288

    Google Scholar 

  • Rüppell G (1985) Kinematic and behavioural aspects of flight of the male banded agrion, Calopteryx (Agrion) splendens L. In: Gewecke M, Wendler G (eds) Insect locomotion. Parey, Berlin Hamburg, pp 194–204

    Google Scholar 

  • Scharstein H (1979) Input-output relationship of the leakyintegrator neuron model. J Math Biol 8:403–420

    Google Scholar 

  • Schmidt J, Zarnack W (1987) The motor pattern of locusts during visually induced rolling in long-term flight. Biol Cybern 56:397–410

    Google Scholar 

  • Schwenne T, Zarnack W (1987) Movements of the hindwings of Locusta migratoria, measured with miniature coils. J Comp Physiol A 160:657–666

    Google Scholar 

  • Snodgrass RE (1929) The thoracic mechanism of a grasshopper, and its antecedents. Smithsonian miscellaneous collections 82 No. 2, pp 1–111

    Google Scholar 

  • Thüring DA (1986) Variability of motor output during flight steering in locusts. J Comp Physiol A 158:653–664

    Google Scholar 

  • Waldmann B (1986) Motorische Muster und Bewegung der Vorderflügel bei optisch induzierten Rollbewegungen im Windkanal fliegender Wüstenheuschrecken. Dipl Math-Nat-Fak Universität Göttingen, pp 1–66

  • Waldmann B, Zarnack W (1987) Motor activity and movements of forewings during roll manoeuvers in flying desert locusts. In: Elsner N, Creutzfeldt O (eds) New frontiers in brain research. Thieme, Stuttgart New York, p 54

    Google Scholar 

  • Weis-Fogh T (1956) Biology and physics of locust flight. II. Flight performance of the desert locust (Schistocerca gregaria F). Phil Trans R Soc Ser B 239:459–510

    Google Scholar 

  • Weis-Fogh T (1973) Quick estimations of flight fitness in hovering animals, including novel mechanisms for lift production. J Exp Biol 59:169–230

    Google Scholar 

  • Wendler G (1985) Insect locomotory systems: control by proprioceptive and exteroceptive inputs. In: Gewecke M, Wendler G (eds) Insect locomotion. Parey, Berlin Hamburg, pp 245–254

    Google Scholar 

  • Wilson DM (1962) Bifunctional muscles in the thorax of grasshoppers. J Exp Biol 39:669–677

    Google Scholar 

  • Wilson DM (1968) Inherent asymmetry and reflex modulation of the locust flight motor pattern. J Exp Biol 48:631–641

    Google Scholar 

  • Wilson DM, Weis-Fogh T (1962) Patterns activity of coordinated motor units, studied in flying locusts. J Exp Biol 39:643–667

    Google Scholar 

  • Wortmann M (1987) Kraftmessungen an fliegenden Wüstenheuschrecken. Dipl Math-Nat-Fak Universität Göttingen, pp 1–65

  • Wortmann M, Zarnack W (1987) The influence of several parameters of wing movement on the lift of Schistocerca gregaria during descending, horizontal, or ascending flight. In: Elsner N, Creutzfeldt O (eds) New frontiers in brain research. Thieme, Stuttgart New York, p 53

    Google Scholar 

  • Zanker JM (1987) Über die Flugkrafterzeugung und Flugkraftsteuerung der Fruchtfliege Drosophila melanogaster. Diss FB Biologie Universität Tübingen, pp 1–118

  • Zarnack W (1972) Flugbiophysik der Wanderheuschrecke (Locusta migratoria L.). I. Die Bewegungen der Vorderflügel. J Comp Physiol 78:356–395

    Google Scholar 

  • Zarnack W (1978) A transducer recording continuously 3-dimensional rotations of biological objects. J Comp Physiol A 126:161–168

    Google Scholar 

  • Zarnack W (1982) Kinematische, aerodynamische und neurophysiologisch-morphologische Untersuchungen des Heuschreckenflugs. Habil Math-Nat-Fak Universität Göttingen

  • Zarnack W (1983) Untersuchungen zum Flug von Wanderheuschrecken. Die Bewegungen, räumlichen Lagebeziehungen sowie Formen und Profile von Vorder- und Hinterflügeln. In: Nachtigall W (ed) BIONA-Report, vol 1. Akad Wiss, Mainz; Fischer, Stuttgart New York, pp 79–102

    Google Scholar 

  • Zarnack W, Möhl B (1977a) Activity of the direct downstroke flight muscles of Locusta migratoria L. during steering behaviour in flight. I. Pattern of time shift. J Comp Physiol A 118:215–233

    Google Scholar 

  • Zarnack W, Möhl B (1977b) A data acquisition processor with data reduction for electrophysiological experiments. Fortschr Zool 24 H2/3:321–326

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zarnack, W. The effect of forewing depressor activity on wing movement during locust flight. Biol. Cybern. 59, 55–70 (1988). https://doi.org/10.1007/BF00336891

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00336891

Keywords

Navigation