Biology and Fertility of Soils

, Volume 9, Issue 2, pp 159–162 | Cite as

Influence of Cognettia sphagnetorum (Oligochaeta: Enchytraeidae) on nitrogen mineralization in homogenized mor humus

  • G. Abrahamsen


The influence of the enchytraeid species Cognettia sphagnetorum on N mineralization in homogenized mor humus was examined in a laboratory study. The mor humus was incubated in containers (150 ml) for 8 months at various temperatures and with different moisture levels. Two series were used, one with C. sphagnetorum and one without. The presence of enchytraeids in the cultures increased the level of NH4+ and NO3- by about 18% compared with the cultures without enchytraeids. Almost 40% of this difference was explained by the decomposition of dead enchytraeids. Temperature and soil moisture were the most important factors controlling the mineralization rate. The optimum moisture for N mineralization was between pF 1.6 and 1.1.

Key words

Soil animals Enchytraeidae Nitrogen Mineralization Soil moisture Temperature Cognettia sphagnetorum 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrahamsen G (1971) The influence of temperature and soil moisture on the population density of Cognettia sphagnetorum (Oligochaeta: Enchytraeidae) in cultures of homogenized raw humus. Pedobiologia 11: 417–424Google Scholar
  2. Abrahamsen G (1972) Ecological study of Enchytraeidae (Oligochaeta) in Norwegian coniferous forest soils. Pedobiologia 12: 26–28Google Scholar
  3. Alexander M (1961) Introduction to soil microbiology. John Wiley, New York LondonGoogle Scholar
  4. Anderson JM, Ineson P, Huish SA (1983) Nitrogen and cation mobilization by soil fauna feeding on leaf litter and soil organic matter from deciduous woodlands. Soil Biol Biochem 15: 463–467Google Scholar
  5. Anderson RV, Coleman DC, Cole CV, Elliott ET (1981) Effect of the nematodes Acrobeloides sp. and Mesodiplogaster lheritieri on substrate utilization and nitrogen and phosphorous mineralization in soil. Ecology 62: 549–555Google Scholar
  6. Anderson RV, Gould WD, Woods LE, Cambardella C, Ingham RE, Coleman DC (1983) Organic and inorganic nitrogenous losses by microbivorous nematodes in soil. Oikos 40: 75–80Google Scholar
  7. Berthet P (1964) L'activités oribatides (Acari: Oribatei) d'une chenaie. Inst R Sci Nat Belg Mem 152: 1–152Google Scholar
  8. Bornebusch CH (1930) The fauna of forest soil. Forstl Forstsoegsvaes Danm 11: 1–158Google Scholar
  9. Bååth E, Lohm U, Lundgren B, Rosswall T, Söderström B, Sohlenius B (1981) Impact of microbial-feeding animals on total soil activity and nitrogen dynamics: A soil microcosm experiment. Oikos 37: 257–264Google Scholar
  10. Drift J van der (1951) Analysis of the animal community in a bech forest floor. Meded Inst toegep biol Onderz Nat 9: 1–168Google Scholar
  11. Edwards CA, Heath GW (1963) The role of soil animals in breakdown of leaf material. In: Doeksen J, Drift J van der (eds) Soil organisms. North-Holland Publishing Company, Amsterdam, pp 76–84Google Scholar
  12. Forsslund KH (1938) Bidrag till kännedomen om djurlivets i marken inverken på markomvandlingen: I. Om nogra hornkvalsters (oribatiders) näring. Meddn St Skogförs Anst 31: 87–107Google Scholar
  13. Forsslund KH (1939) Über die Ernährungsverhältnisse der Hornmilben (Oribatiden) und ihre Bedeutung für die Prozesse in Waldböden. VII. Internationaler Kongreß für Entomologie, BerlinGoogle Scholar
  14. Forsslund KH (1943) Studier över det lägre djurlivet i nordsvensk skogsmark. Meddn St Skogförs Anst 34: 1–283Google Scholar
  15. Hartenstein R (1962) Soil Oribatei: VII. Decomposition of conifer needles and deciduous leaf petioles by Steganacarus deaphanum (Acari: Pthiracaridae). Ann Ent Soc Am 55: 713–716Google Scholar
  16. Hartenstein R (1964) Feeding, digestion, glycogen, and the environmental conditions of the digestive system in Oniscus asellus. J Insect Physiol 10: 611–621Google Scholar
  17. Huhta V, Setälä H, Haimi J (1988) Leaching of N and C from birch leaf litter and raw humus with special emphasis on the influence of soil fauna. Soil Biol Biochem 20: 875–878Google Scholar
  18. Huish S, Leonard MA, Anderson JM (1985) Wetting and drying effects on animal/microbial mediated nitrogen mineralization and mineral element losses from deciduous forest litter and raw humus. Pedobiologia 28: 177–183Google Scholar
  19. Ineson P, Leonard MA, Anderson JM (1982) Effect of collembolan grazing upon nitrogen and cation leaching from decomposing leaf litter. Soil Biol Biochem 14: 601–605Google Scholar
  20. Katznelson H, Stevenson JL (1956) Observation on the metabolic activity of the soil microflora. Can J Microbiol 2: 611–622Google Scholar
  21. Lindquist B (1941) Undersökninger över några skandinaviska daggmaskarters betydelse för lövförnans omvandling och för mulljordens struktur i svensk skogsmark. Svenska Skogsv För Tidskr 39: 179–242Google Scholar
  22. Macfayden A (1963) The contribution of the microfauna to total soil metabolism. In: Doeksen J, Drift J van der (eds) Soil organisms. North-Holland Publishing Company, Amsterdam, pp 3–17Google Scholar
  23. Nielsen CO (1961) Respiratory metabolism of some populations of enchytraeid worms and freeliving nematodes. Oikos 12: 17–35Google Scholar
  24. Nielsen CO (1962) Carbohydrases in soil and litter invertebrates. Oikos 13: 200–215Google Scholar
  25. Nurminen M (1967) Ecology of enchytraeids (Oligochaeta) in Finnish coniferous forest soil. Ann Zool Fenn 4: 147–157Google Scholar
  26. O'Connor FB (1955) Extraction of enchytraeid worms from a coniferous forest soil. Nature 175: 815–816Google Scholar
  27. O'Connor FB (1963) Oxygen consumption and population metabolism of some populations of Enchytraeidae from North Wales. In: Doeksen J, Drift J van der (eds) Soil organisms. North-Holland Publishing Company, Amsterdam, pp 32–48Google Scholar
  28. Overrein LN (1967) Immobilization and mineralization of tracer nitrogen in forest raw humus: I. Effect of temperature on the interchange of nitrogen after addition of urea-, ammonium-, and nitrate-N15. Plant and Soil 27: 1–19Google Scholar
  29. Phillipson J (1967) Ecological energetics. Studies in Biology no 1. Edward Arnold (Publishers) Ltd, LondonGoogle Scholar
  30. Satchell JE (1958) Earthworm biology and soil fertility. Soils Fert 21: 209–219Google Scholar
  31. Satchell JE (1967) Lumbricidae. In: Burges A, Raw F (eds) Soil biology. Academic Press, London New York, pp 259–322Google Scholar
  32. Tracey MV (1951) Cellulase and chitinase of earthworms. Nature (London) 167: 776–777Google Scholar
  33. Witkamp M (1960) Seasonal fluctuations of the fungus flora in mull and mor of an oak forest. Medd ITBON (Instituut voor Toegepost Biologisch Onderzoek in de Natur) 46: 1–51Google Scholar
  34. Zinkler D (1971) Carbohydrasen streubewohnender Collembolen und Oribaatiden. IV. Colloquium pedobiologiae, Dijon 1970, INRA (Institut National de la Recherche Agronomique), pp 329–334Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • G. Abrahamsen
    • 1
  1. 1.Department of Soil SciencesAgricultural University of Norway, Aas-NLHNorway

Personalised recommendations