Skip to main content
Log in

Motion sensitive interneurons in the optomotor system of the fly

II. The horizontal cells: Receptive field organization and response characteristics

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

The functional properties of the three horizontal cells (north horizontal cell, HSN; equatorial horizontal cell, HSE; south horizontal cell, HSS) in the lobula plate of the blowflyCalliphora erythrocephala were investigated electrophysiologically. 1. The receptive fields of the HSN, HSE, and HSS cover the dorsal, equatorial and ventral part of the ipsilateral visual field, respectively. In all three cells, the sensitivity to visual stimulation is highest in the frontal visual field and decreases laterally. The receptive fields and spatial sensitivity distributions of the horizontal cells are directly determined by the position and extension of their dendritic fields in the lobula plate and the dendritic density distributions within these fields. 2. The horizontal cells respond mainly to progressive (front to back) motion and are inhibited by motion in the reverse direction, the preferred and null direction being antiparallel. The amplitudes of motion induced excitatory and inhibitory responses decline like a cosine function with increasing deviation of the direction of motion from the preferred direction. Stimulation with motion in directions perpendicular to the preferred direction is ineffective. 3. The preferred directions of the horizontal cells show characteristic gradual orientation changes in different parts of the receptive fields: they are horizontally oriented only in the equatorial region and increasingly tilted vertically towards the dorsofrontal and ventrofrontal margins of the visual field. These orientation changes can be correlated with equivalent changes in the local orientation of the lattice of ommatidial axes in the pertinent compound eye. 4. The response amplitudes of the horizontal cells under stimulation with a moving periodic grating depend strongly on the contrast frequency of the stimulus. Maximal responses were found at contrast frequencies of 2–5 Hz. 5. The spatial integration properties of the horizontal cells (studied in the HSE) are highly nonlinear. Under stimulation with extended moving patterns, their response amplitudes are nearly independent of the size of the stimuli. It is demonstrated that this response behaviour does not result from postsynaptic saturation in the dendrites of the cells. The results indicate that the horizontal system is essentially involved in the neural control of optomotor torque responses performed by the fly in order to minimize unvoluntary deviations from a straight flight course.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beersma, D.G.M., Stavenga, D.G., Kuiper J.W.: Retinal lattice, visual field and binocularities in flies. J. Comp. Physiol.119, 207–220 (1977)

    Google Scholar 

  • Bishop, L.G., Keehn, D.G., McCann, G.D.: Motion detection by interneurons of the optic lobes and brain of the flies,Calliphora phaenicia andMusca domestica. J. Neurophysiol.31, 509–525 (1968)

    Google Scholar 

  • Blondeau, J.: Electrically evoked motor activity in the fly, (Calliphora erythrocephala). Dissertation, Universität Tübingen 1977

  • Blondeau, J.: Electrically evoked course control in the flyCalliphora erythrocephala. J. Exp. Biol.92, 143–153 (1981a)

    Google Scholar 

  • Blondeau, J.: Aerodynamic capability of flies as revealed by a new technique. J. Exp. Biol.92, 155–163 (1981b)

    Google Scholar 

  • Blondeau, J., Heisenberg, M.: The three-dimensional optomotor torque system ofDrosophila melanogaster. J. Comp. Physiol.145, 321–329 (1982)

    Google Scholar 

  • Braitenberg, V.: Periodic structures and structural gradients in the visual ganglia of the fly. In: Information processing in the visual system of arthropods. Wehner, R. (ed.), pp. 1–15. Berlin, Heidelberg, New York: Springer 1972

    Google Scholar 

  • Dvorak, D.R., Bishop, L.G., Eckert, H.E.: On the identification of movement detectors in the fly optic lobe. J. Comp. Physiol.100, 5–23 (1975)

    Google Scholar 

  • Eckert, H.: Identifizierte, bewegungssensitive Interneurone als neurophysiologische Korrelate für das Bewegungssehen der Insekten. Verh. Dtsch. Zool. Ges. 1976, p. 253. Stuttgart: Gustav Fischer 1976

    Google Scholar 

  • Eckert, H.: Anatomie, Elektrophysiologie und funktionelle Bedeutung bewegungssensitiver Neurone in der Sehbahn von Dipteren (Phaenicia). Habilitationsschrift, Universität Bochum 1979

  • Eckert, H.: Functional properties of the H1-neurons in the third optic ganglion of the blowfly,Phaenicia. J. Comp. Physiol.135, 29–39 (1980)

    Google Scholar 

  • Eckert, H.: The horizontal cells in the lobula plate of the blowfly,Phaenicia sericata. J. Comp. Physiol.143, 511–526 (1981)

    Google Scholar 

  • Franceschini, N.: Sampling of the visual environment by the compound eye of the fly: fundamentals and applications. In: Photoreceptor optics, Snyder, A.W., Menzel, R. (eds.), pp. 98–125. Berlin, Heidelberg, New York: Springer 1975

    Google Scholar 

  • Geiger, G., Nässel, D.R.: Visual orientation behaviour of flies after laser beam ablation of interneurons. Nature293, 398–399 (1981)

    Google Scholar 

  • Geiger, G. Nässel, D.R.: Visual processing of moving single-objects and wide-field patterns in flies. Biol. Cybern.44, 141–150 (1982)

    Google Scholar 

  • Götz, K.G., Hengstenberg, B., Biesinger, R.: Optomotor control of wing beat and body posture inDrosophila. Biol. Cybern.35, 101–112 (1978)

    Google Scholar 

  • Hausen, K.: Struktur, Funktion und Konnektivität bewegungsempfindlicher Interneuronen im dritten optischen Neuropil der SchmeißfliegeCalliphora erythrocephala. Dissertation, Universität Tübingen 1976a

  • Hausen, K.: Functional characterization and anatomical identification of motion sensitive neurons in the lobula plate of the blowflyCalliphora erythrocephala. Z. Naturforsch.31c, 629–633 (1976b)

    Google Scholar 

  • Hausen, K.: Funktion, Struktur und Konnektivität bewegungsempfindlicher Interneurone in der Lobula plate von Dipteren. Verh. Dtsch. Zool. Ges. 1976, p. 254. Stuttgart: Gustav Fischer 1976c

    Google Scholar 

  • Hausen, K.: Signal processing in the inset eye. In: Function and formation of neural systems. Stent, G.S. (ed.), pp. 81–110. Berlin: Dahlem Konferenzen 1977

    Google Scholar 

  • Hausen, K.: Monocular and binocular computation of motion in the lobula plate of the fly. Verh. Dtsch. Zool. Ges. 1981, pp. 49–70. Stuttgart: Gustav Fischer 1981

    Google Scholar 

  • Hausen, K.: Motion sensitive interneurons in the optomotor system of the fly. I. The horizontal cells: structure and signals. Biol. Cybern.45, 143–156 (1982)

    Google Scholar 

  • Hausen, K., Wehrhahn, C.: The role of the horizontal cells in the optomotor yaw torque response in flies (in preparation) (1982)

  • Heide, G.: Properties of a motor output system involved in the optomotor responses of flies. Biol. Cybern.20, 99–112 (1975)

    Google Scholar 

  • Heisenberg, M., Wonneberger, R., Wolf, R.: Optomotor-blind — aDrosophila mutant of the lobula plate giant neurons. J. Comp. Physiol.124, 287–296 (1978)

    Google Scholar 

  • Hengstenberg, R.: Spike responses of non-spiking visual interneurone. Nature270, 338–340 (1977)

    Google Scholar 

  • Hengstenberg, R.: Common visual response properties of giant vertical cells in the lobula plate of the blowflyCalliphora. J. Comp. Physiol. (in press) (1982)

  • Mastebroek, H.A.K., Zaagman, W.H., Lenting, B.P.M.: Movement detection: performance of a wide-field element in the visual system of the blowfly. Vision Res.20 467–474 (1980)

    Google Scholar 

  • McCann, G.D., Dill, J.C.: Fundamental properties of intensity, form, and motion perception in the visual nervous system ofCalliphora phaenicia andMusca domestica. J. Gen. Physiol.53, 355–371 (1969)

    Google Scholar 

  • McCann, G.D., Foster, S.F.: Binocular interactions of motion detection fibers in the optic lobes of flies. Kybernetik8, 193–203 (1971)

    Google Scholar 

  • Pick, B.: Visual pattern discrimination as an element of the fly's orientation behaviour. Biol. Cybern.23, 171–180 (1976)

    Google Scholar 

  • Poggio, T., Reichardt, W., Hausen, K.: A neuronal circuitry for relative movement discrimination by the visual system of the fly. Naturwissenschaften68, 443–446 (1981)

    Google Scholar 

  • Reichardt, W., Poggio, T., Hausen, K.: Figure-ground discrimination by relative movement in the visual system of the fly. Part II: Towards the neural circuitry (in preparation) (1982)

  • Soohoo, S.L., Bishop, L.G.: Intensity and motion response of giant vertical neurons in the fly eye. J. Neurobiol.11, 159–177 (1980)

    Google Scholar 

  • Spüler, M.: Erregende und hemmende Wirkungen visueller Bewegungsreize auf das Flugsteuersystem von Fliegen —Elektrophysiologische und verhaltensphysiologische Untersuchungen anMusca andCalliphora. Dissertation, Universität Düsseldorf 1980

  • Wehrhahn, C., Hausen, K.: How is tracking and fixation accomplished in the nervous of the fly? Biol. Cybern.38, 179–186 (1980)

    Google Scholar 

  • Zaagman, W.H., Mastebroek, H.A.K., Kuiper, J.W.: On the correlation model: processing of continuously moving patterns by a movement detecting neural element in the fly visual system. Biol. Cybern.31, 163–168 (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hausen, K. Motion sensitive interneurons in the optomotor system of the fly. Biol. Cybern. 46, 67–79 (1982). https://doi.org/10.1007/BF00335352

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00335352

Keywords

Navigation