Skip to main content
Log in

Karyotype stability and DNA variability in the Acrididae

  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

The Acrididae are frequently quoted as one of the classic examples of karyotypic stability. Within the family, the Cryptosacci, for instance, are characterised by a majority of species having 23 chromosome arms in the male. The members are then related by Robertsonian sequences in which the basic karyotype is believed to consist of 23 acrocentric elements. Thus the 17-chromosome complement of male truxalines is argued to have been derived from the basic type by three successive centric fusions. Such an origin is at variance with the fact that the rod-shaped chromosomes in eight of the nine species utilised in this study turn out in fact to be telocentric. The scheme is also at variance with the finding that significant differences in DNA content exist both between species within the same chromosome group and between member species of the 17 and 23 groups. The concept of karyotypic stability is thus called to question and the relationship of karyotypes within the family must be considerably more complex than has formerly been supposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Christensen, B.: Cytophotometric studies on the DNA content in diploid and polyploid Enchytraeidae (Oligochaeta). Chromosoma (Berl.) 18, 305–315 (1966).

    Google Scholar 

  • Coleman, L.C.: Chromosome structure in the Acrididae with special reference to the X-chromosome. Genetics 28, 2–8 (1943).

    Google Scholar 

  • Darlington, C.D.: Crossing-over and its mechanical relationships in Chorthippus and Stauroderus. J. Genet. 33, 465–500 (1963).

    Google Scholar 

  • —, and L.F. La Cour: Hybridity selection in Campanula. Heredity 4, 217–248 (1950).

    Google Scholar 

  • Hughes-Schrader, S.: The nuclear content of deoxyribonucleic acid and interspecific relationships in the mantid genus Liturgousa. Chromosoma (Berl.) 5, 544–554 (1953); - The DNA content of the nucleus as a tool in the cytotaxonomic study of insects. Proc. Xth. Int. Congr. Entomol. 1956, 2, 935–944 (1958).

    Google Scholar 

  • John, B., and G.M. Hewitt: The B-chromosome system of Myrmeleotettix maculatus I. The mechanics. Chromosoma (Berl.) 16, 548–578 (1965).

    Google Scholar 

  • —, and K.R. Lewis: Genetic speciation in the grasshopper Eyprepocnemis plorans. Chromosoma (Berl.) 16, 308–344 (1965).

    Google Scholar 

  • Kayano, H., and K. Nakamura: Chiasma studies in structural hybrids V. Heterozygotes for a centric fusion and for a translocation in Acrida lata. Cytologia (Tokyo) 25, 476–480 (1960).

    Google Scholar 

  • Keyl, H.-G.: A demonstrable local and geometric increase in the chromosomal DNA of Chironomus. Experienta (Basel) 21, 191 (1965).

    Google Scholar 

  • Lewitsky, G.A.: The morphology of the chromosomes. Bull. appl. Bot. 27, 19–173 1931).

    Google Scholar 

  • Lima-de-Faria, A.: The role of the kintetochore in chromosome organisation. Hereditas (Lund) 42, 85–160 (1956).

    Google Scholar 

  • Makino, S., and E. Momma: Observations on the structure of grasshopper chromosomes subjected to a new acetocarmine treatment. J. Morph. 86, 229–252 (1950).

    Google Scholar 

  • Marks, G.E.: The cytology of Oxalis dispar (Brown). Chromosoma (Berl.) 8, 650–670 (1957); - Telocentric chromosomes. Amer. Naturalist 91, 223–232 (1957).

    Google Scholar 

  • Matthey, R.: Polymorphisme chromosomique intraspécifique et intraindividuel chez Acomys minous Bate (Mammalia-Rodentia-Muridae). Étude cytologiques des hybrides Acomys minous ♂ × Acomys cahirinus ♀. Le méchanisme des fusions centriques. Chromosoma (Berl.) 14, 468–497 (1963).

    Google Scholar 

  • McClung, C.E.: A comparative study of the chromosomes in orthopteran spermatogenesis. J. Morph. 25, 651–749 (1914).

    Google Scholar 

  • McLeish, J., and N. Sunderland: Measurements of deoxyribosenucleic acid (DNA) in higher plants by Feulgen photometry and chemical methods. Exp. Cell Res. 24, 527–540 (1961).

    Google Scholar 

  • Morrison, J.W.: Chromosome interchange by misdivision in Triticum. Canad. J. Bot. 32, 281–284 (1954).

    Google Scholar 

  • Muller, H.J.: Bearings of the ‘Drosophila’ work on systematics, p. 185–268 in: The new systematics. Oxford: Clarendon Press 1940.

    Google Scholar 

  • Nawaschin, S.: Sur quelques charactères de l'organisation interne des chromosomes, p. 185–214. Réc. d'Art Sci. dédié à C. Timiriaseff. Moscow 1916.

  • Rhoades, M.M.: Studies of a telocentric chromosome in maize with reference to the stability of its centromere. Genetics 25, 483–520 (1940).

    Google Scholar 

  • Schrader, F., and S. Hughes-Schrader: Polyploidy and fragmentation in the chromosomal evolution of various species of Thyanta (Hemiptera). Chromosoma (Berl.) 7, 469–496 (1956); - Chromatid autonomy in Banasa (Hemiptera: Pentatomidae). Chromosoma (Berl.) 9, 193–215 (1958).

    Google Scholar 

  • Sunderland, N., and J. McLeish: Nucleic acid content and concentration in root cells of higher plants. Exp. Cell Res. 24, 541–554 (1961).

    Google Scholar 

  • Ullerich, F.-H.: Karyotyp und DNS-Gehalt von Bufo bufo, B. viridis, B. bufo × B. viridis und B. calamita (Amphibia, Anura). Chromosoma (Berl.) 18, 316–342 (1966).

    Google Scholar 

  • Wahrman, J., and R. O'Brien: Nuclear content of DNA in chromosomal polymorphism in the genus Ameles (Orthoptera:Mantoidea). J. Morph. 99, 259–270 (1956).

    Google Scholar 

  • White, M.J.D.: Cytogenetics of orthopterid insects. Advanc. Genet. 4, 267–330 (1951); - Some general problems of chromosomal evolution and speciation in animals. Surv. Biol. Progr. 3, 109–147 (1957); - Cytogenetics of the grasshopper Moraba scurra 1. Meiosis of interracial and interpopulation hybrids. Aust. J. Zool. 5, 285–304 (1957); - Chiasmatic and achiasmatic meiosis in african eumastacid grasshoppers. Chromosoma (Berl.) 16, 271–307 (1965).

    Google Scholar 

  • —, H.L. Carson, and J. Cheney: Chromosomal races in the australian grasshopper Moraba viatica in a zone of geographic overlap. Evolution (Lawrence, Kansas) 18, 417–429 (1964).

    Google Scholar 

  • Wolf, B.E.: Zur Karyologie der Eireifung und Furchung bei Cloeon dipterum L. (Bengtsson) (Ephemerida, Baetididae). Biol. Zbl. 79, 153–198 (1960).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

John, B., Hewitt, G.M. Karyotype stability and DNA variability in the Acrididae. Chromosoma 20, 155–172 (1966). https://doi.org/10.1007/BF00335205

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00335205

Keywords

Navigation