Skip to main content
Log in

Construction of recombination-deficient strains of Pseudomonas aeruginosa

  • Short Communication
  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

The rec-102 mutation had pleiotropic effects in Pseudomonas aeruginosa: low recombination proficiency in conjugation and transduction; high UV sensitivity; inability to induce pyocin R2 by mitomycin C; and increased susceptibility to mitomycin C and nalidixic acid. The rec-102 locus was mapped by R68.45-mediated conjugation in the 45 min region of the PAO chromosome, between argF and thr-9001. By selection for a marker in this region, rec-102 can be introduced into a P. aeruginosa strain of interest using an R68.45 rec-102 donor. The recombination-deficient strains constructed in this way were phenotypically similar to Escherichia coli recA mutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Chandler PM, Krishnapillai V (1974) Isolation and properties of recombination-deficient mutants of Pseudomonas aeruginosa. Mutat Res 23:15–23

    Google Scholar 

  • Csonka LN, Clark AJ (1979) Deletions generated by the transposon Tn10 in the srl recA region of the Escherichia coli K-12 chromosome. Genetics 93:321–343

    Google Scholar 

  • Godfrey AJ, Morgan AF, Holloway BW (1980) Structural instability of IncP-1 plasmids in Pseudomonas aeruginosa PAT involves interaction with plasmid pVS1. J Bacteriol 144:622–629

    Google Scholar 

  • Haas D, Evans R, Mercenier A, Simon JP, Stalon V (1979) Genetic and physiological characterization of Pseudomonas aeruginosa mutants affected in the catabolic ornithine carbamoyltransferase. J Bacteriol 139:713–720

    Google Scholar 

  • Haas D, Holloway BW (1978) Chromosome mobilization by the R plasmid R68.45: a tool in Pseudomonas genetics. Mol Gen Genet 158:229–237

    Google Scholar 

  • Haas D, Riess G (1983) Spontaneous deletions of the chromosomemobilizing plasmid R68.45 in Pseudomonas aeruginosa PAO. Plasmid 9:42–52

    Google Scholar 

  • Haas D, Holloway BW, Schamböck A, Leisinger T (1977) The genetic organization of arginine biosynthesis in Pseudomonas aeruginosa. Mol Gen Genet 154:7–22

    Google Scholar 

  • Holloway BW (1978) Isolation and characterization of an R' plasmid in Pseudomonas aeruginosa. J Bacteriol 133:1078–1082

    Google Scholar 

  • Holloway BW, Krishnapillai V, Morgan AF (1979) Chromosomal genetics of Pseudomonas. Microbiol Rev 43:73–102

    Google Scholar 

  • Kageyama M (1975) Bacteriocins and bacteriophages in Pseudomonas aeruginosa. In: Mitsuhashi S, Hashimoto H (eds) Microbial drug resistance, University of Tokyo Press, Tokyo, p 291–305

    Google Scholar 

  • Krishnapillai V (1971) A novel transducing phage. Its role in recognition of a possible new host-controlled modification system in Pseudomonas aeruginosa. Mol Gen Genet 114:134–143

    Google Scholar 

  • Krylov VN, Bogush VG, Shapiro J (1980) Pseudomonas aeruginosa phages which DNA structure is similar to Mul phage DNA. I. General description, localization of endonuclease-sensitive sites in DNA, and the structure of D3112 phage homoduplexes. Genetika (Russian) 16:824–831

    Google Scholar 

  • Lehrbach PR, Dirckze CD, Lee BTO (1980) A mutant of Pseudomonas aeruginosa deficient in an ATP-dependent deoxyribonuclease. J Gen Microbiol 120:377–384

    Google Scholar 

  • Little JW, Mount DW (1982) The SOS regulatory system of Escherichia coli. Cell 29:11–22

    Google Scholar 

  • Matsumoto H, Tazaki T (1975) Serotypic recombination in Pseudomonas aeruginosa. In: Mitsuhashi S, Hashimoto H (eds) Microbial drug resistance, University of Tokyo Press, Tokyo, p 281–290

    Google Scholar 

  • Meile L, Soldati L, Leisinger T (1982) Regulation of proline catabolism in Pseudomonas aeruginosa PAO. Arch Microbiol 132:189–193

    Google Scholar 

  • Miller RV, Ku C-MC (1978) Characterization of Pseudomonas aeruginosa mutants deficient in the establishment of lysogeny. J Bacteriol 134:875–883

    Google Scholar 

  • Olsen RH, DeBusscher G, McCombie WR (1982) Development of broad-host-range vectors and gene banks: self-cloning of the Pseudomonas aeruginosa PAO chromosome. J Bacteriol 150:60–69

    Google Scholar 

  • Royle PL, Holloway BW (1981) New prime plasmids from Pseudomonas aeruginosa. Genet Res Camb 37:265–274

    Google Scholar 

  • Royle PL, Matsumoto H, Holloway BW (1981) Genetic circularity of the Pseudomonas aeruginosa PAO chromosome. J Bacteriol 145:145–155

    Google Scholar 

  • Voellmy R, Leisinger T (1976) Role of 4-aminobutyrate aminotransferase in the arginine metabolism of Pseudomonas aeruginosa. J Bacteriol 128:722–729

    Google Scholar 

  • Watson JM, Holloway BW (1976) Suppressor mutations in Pseudomonas aeruginosa. J Bacteriol 125:780–786

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by P. Emmerson

Rights and permissions

Reprints and permissions

About this article

Cite this article

Früh, R., Watson, J.M. & Haas, D. Construction of recombination-deficient strains of Pseudomonas aeruginosa . Mol Gen Genet 191, 334–337 (1983). https://doi.org/10.1007/BF00334835

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00334835

Keywords

Navigation