Skip to main content
Log in

Regulation of pyrC expression in Salmonella typhimurium: Identification of a regulatory region

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

Deletion analysis of a plasmid carrying the entire pyrC gene of Salmonella typhimurium served to localize the regulatory region within a 120 base pair DNA fragment comprising the promoter-leader region and the first 10 codons of pyrC. A region of dyad symmetry is present in the leader DNA and may result in the formation of a stable hairpin in the transcript with part of the Shine-Dalgarno sequence included in the stem. Four independently-isolated regulatory mutants, overexpressing pyrC, were found to have point mutations within the symmetry region and, significantly, the mutations occurred in sequences pertaining to either side of the stem of the putative hairpin of the transcript. All four mutations would decrease the stability of the hairpin, suggesting that pyrC expression is controlled at the level of translation. Additional evidence for translational control was provided by the finding that synthesis of galactokinase mediated from a pyrC-galK transcriptional fusion is not regulated by pyrimidines. The importance of the symmetry region in the leader was further emphasized by showing that pyrC expression is strongly affected when this region is deleted, inverted, or structured as a tandem duplication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Backstrom D, Sjoberg R-M, Lundberg LG (1986) Nucleotide sequence of the structural gene for dihydroorotase of Escherichia coli K12. Eur J Biochem 160:77–82

    Google Scholar 

  • Bonekamp F, Clemmesen K, Karlstrom O, Jensen KF (1984) Mechanism of UTP-modulated attenuation at the pyrE gene of Escherichia coli: an example of operon polarity control through the coupling of translation to transcription. EMBO J 3:2857–2861

    Google Scholar 

  • Clemmesen K, Bonekamp F, Karlstrom O, Jensen KF (1985) Role of translation in the UTP-modulated attenuation at the pyrBI operon of Escherichia coli. Mol Gen Genet 201:247–251

    Google Scholar 

  • Davison J, Heusterspreute M, Merchez M, Brunel F (1984) Vectors with restriction-site banks. I. pJRD158, a 3903-bp plasmid containing 28 unique cloning sites. Gene 28:311–318

    Google Scholar 

  • Gold L, Pribnow D, Schneider T, Shinedling S, Singer BS, Stormo G (1981) Translational initiation in procaryotes. Annu Rev Microbiol 35:365–403

    Google Scholar 

  • Hove-Jensen B (1985) Cloning and characterization of the prs gene encoding phosphoribosylpyrophosphate synthetase of Escherichia coli. Mol Gen Genet 201:269–276

    Google Scholar 

  • Jensen KF, Larsen JN, Schack L, Sivertsen A (1984) Studies on the structure and expression of Escherichia coli pyrC, pyrD, and pyrF using the cloned genes. Eur J Biochem 140:343–352

    Google Scholar 

  • Jensen KF, Bonekamp F, Poulsen P (1986) Attenuation at nucleotide biosynthetic genes and amino acid biosynthetic operons of Escherichia coli. Trends Biochem Sci 11:362–365

    Google Scholar 

  • Kelln RA, Kinaham JJ, Foltermann KF, O'Donovan GA (1975) Pyrimidine biosynthetic enzymes of Salmonella typhimurium, repressed specifically by growth in the presence of cytidine. J Bacteriol 124:764–774

    Google Scholar 

  • Kelln RA, Neuhard J, Stauning L (1985) Isolation and characterization of pyrimidine mutants of Salmonella typhimurium altered in expression of pyrC, pyrD, and pyrE. Can J Microbiol 31:981–987

    Google Scholar 

  • Levin HL, Schachman HK (1985) Regulation of aspartate transcarbamoylase synthesis in Escherichia coli: Analysis of deletion mutations in the promoeer region of the pyrBI operon. Proc Natl Acad Sci USA 82:4643–4647

    Google Scholar 

  • McKenney K, Shimatake H, Court D, Schmeissner U, Brady C, Rosenberg M (1981) A system to study promoter and terminator signals recognized by Escherichia coli RNA polymerase. In: Chirigjian JC, Papas TS (eds) Gene amplification and analysis, vol 2. Elsevier/North-Holland, New York, pp 383–415

    Google Scholar 

  • Messing J (1983) New M13 vectors for cloning. Methods Enzymol 101:21–78

    Google Scholar 

  • Michaels G, Kelln RA, Nargang FE (1987) Cloning, nucleotide sequence and expression of the pyrBI operon of Salmonella typhimurium LT2. Eur J Biochem 166:55–61

    Google Scholar 

  • Minton NP (1984) Improved plasmid vectors for the isolation of translational lac gene fusions. Gene 31:269–273

    Google Scholar 

  • Neuhard J, Kelln RA (1985) Cloning and characterization of the pyrE gene and of pyrE:: Mud1 (ApR lac) fusions from Salmonella typhimurium. Eur J Biochem 146:597–603

    Google Scholar 

  • Neuhard J, Kelln RA, Stauning E (1986) Cloning and structural characterization of the Salmonella typhimurium pyrC gene encoding dihydroorotase. Eur J Biochem 157:335–342

    Google Scholar 

  • Pierard A, Glansdorff N, Gigot D, Crabeel M, Halleux P, Thiry L (1976) Repression of Escherichia coli carbamoylphosphate synthase: relationships with enzyme synthesis in the arginine and pyrimidine pathways. J Bacteriol 127:291–301

    Google Scholar 

  • Poulsen P, Jensen KF (1987) Effect of UTP and GTP pools on attenuation at the pyrE gene of Escherichia coli. Mol Gen Genet 208:152–158

    Google Scholar 

  • Poulsen P, Bonekamp F, Jensen KF (1984) Structure of the Escherichia coli pyrE operon and control of pyrE expression by a UTP modulated intercistronic attenuation. EMBO J 3:1783–1790

    Google Scholar 

  • Pratt D, Tzagoloff H, Erdahl WS (1966) Conditional lethal mutants of the filamentous coliphage M13: I. Isolation, complementation, cell killing, time of cistron action. Virology 30:397–410

    Google Scholar 

  • Roland KL, Powell FE, Turnbough CL (1985) Role of translation and attenuation in the control of pyrBI operon expression in Escherichia coli K12. J Bacteriol 163:991–999

    Google Scholar 

  • Schwartz M, Neuhard J (1975) Control of expression of the pyr genes in Salmonella typhimurium: Effects of variations in uridine and cytidine nucleotide pools. J Bacteriol 121:814–822

    Google Scholar 

  • Shine J, Dalgarno L (1974) The 3′-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc Natl Acad Sci USA 71:1342–1346

    Google Scholar 

  • Silhavy TJ, Berman ML, Enquist LW (1984) Experiments with gene fusions. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Stanssens P, Remaut E, Fiers W (1985) Alterations upstream from the Shine-Dalgarno region and their effect on bacterial gene expression. Gene 36:211–223

    Google Scholar 

  • Stanssens P, Remaut E, Fiers W (1986) Inefficient translation initiation causes premature transcription termination in the lacZ gene. Cell 44:711–718

    Google Scholar 

  • Theisen M. Kelln RA, Neuhard J (1987) Cloning and characterization of the pyrF operon of Salmonella typhimurium. Eur J Biochem 164:613–619

    Google Scholar 

  • Turnbough CL, Hicks KL. Donahue JP (1983) Attenuation control of pyrBI operon expression in Escherichia coli K-12. Proc Natl Acad Sci USA 80:368–372

    Google Scholar 

  • Turnbough CL, Kerr KH, Funderburg WR, Donahue JP, Powell FE (1987) Nucleotide sequence and characterization of the pyrF operon of Escherichia coli K-12. J Biol Chem 262:10239–10245

    Google Scholar 

  • Valentin-Hansen P, Albrechtsen B, Larsen JEL (1986) DNA-protein recognition: demonstration of three genetically separated operator elements that are required for repression of the Escherichia coli deoCABD promoters by the DeoR repressor. EMBO J 5:2015–2021

    Google Scholar 

  • Wertman KF, Little JW, Mount DW (1984) Rapid mutational analysis of regulatory loci in Escherichia coli K-12 using bacteriophage M13. Proc Natl Acad Sci USA 81:3801–3805

    Google Scholar 

  • Zabeau M, Stanley KK (1982) Enhanced expression of cro-β-galactosidase fusion proteins under the control of the PR promoter of bacteriophage λ. EMBO J 1:1217–1224

    Google Scholar 

  • Zuker M, Stiegler P (1981) Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res 9:133–148

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H. Hennecke

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kelln, R.A., Neuhard, J. Regulation of pyrC expression in Salmonella typhimurium: Identification of a regulatory region. Mol Gen Genet 212, 287–294 (1988). https://doi.org/10.1007/BF00334698

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00334698

Key words

Navigation