Skip to main content
Log in

Heme-deficient mutants of Salmonella typhimurium: Two genes required for ALA synthesis

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

The first step in heme biosynthesis is the formation of 5-aminolevulinic acid (ALA). We have isolated, mapped and characterized a large number of Salmonella typhimurium mutants auxotrophic for ALA. These mutants carry defects in either one of two genes, both required for ALA synthesis. The previously identified hemA gene maps at 35 min, and the hemL gene maps at 5 min on the S. typhimurium genetic map. Mutants in hemA and hemL are defective for aerobic and anaerobic respiration, and appear to be oxygen sensitive. The Hem phenotype of hemL mutants is less severe than that of hemA mutants. Although hemA and hemL mutants are deficient in heme synthesis, genetic tests indicate that they still synthesize two minor products of the heme pathway, siroheme and cobalamin (vitamin B12), under anaerobic conditions. In contrast, hemB, hemC and cysG mutants, blocked after ALA synthesis, make neither siroheme nor vitamin B12. Double mutants defective in both hemA and hemL also make siroheme. We suggest that hemA and hemL are required for one route of ALA synthesis and that a second, minor route of ALA synthesis may operate in S. typhimurium; this second pathway would be independent of the hemA and hemL functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Amp:

ampicillin

Cam:

chloramphenicol

Kan:

kanamycin

Tet:

tetracycline

Str:

streptomycin

X-gal:

5-bromo-4-chloro-3-indolyl-β-d-galactoside

DES:

diethyl sulfate

References

  • Bachmann BJ (1983) Linkage map of Escherichia coli K-12, Edn 7. Microbiol Rev 47:180–230

    Google Scholar 

  • Barrett EL, Chang GW (1979) Cysteine auxotrophs of Salmonella typhimurium which grow without cysteine in a hydrogen/carbon dioxide atmosphere. J Gen Microbiol 115:513–516

    Google Scholar 

  • Bcale SI (1978) δ-aminolevulinic acid in plants: its biosynthesis, regulation and role in plastid development. Annu Rev Plant Physiol 29:95–120

    Google Scholar 

  • Beljanski M, Beljanski M (1957) Sur la formation d'enzymes respiratoires chez un mutant d'Escherichia coli streptomycino-resistant et auxotrophe pour l'hemine. Ann Inst Pasteur 92:396–412

    Google Scholar 

  • Berkowitz D, Hushon JM, Whitfield HJ, Roth J, Ames BN (1968) Procedure for identifying nonsense mutations. J Bacteriol 96:215–220

    Google Scholar 

  • Bochner BR, Huang H-C, Schieven GL, Ames BN (1980) Positive selection for loss of tetracycline resistance. J Bacteriol 143:926–933

    Google Scholar 

  • Burnham BF (1969) Metabolism of porphyrins and corrinoids. In: Greenberg DM (ed) Metabolic pathways, vol III. Amino acids and tetrapyrroles, 3rd edn. Academic Press, pp 403–537

  • Burnham BF, Lascelles J (1963) Control of porphyrin synthesis through a negative feedback mechanism. Studies with preparations of δ-aminolaevulate synthetase and δ-aminolaevulate dehydratase from Rhodopseudomonas spheroides. Biochem J 87:462–472

    Google Scholar 

  • Casadaban MJ, Cohen SN (1979) Lactose genes fused to exogenous promoters in one step using a Mu-lac bacteriophage: in vivo probe for transcriptional control sequences. Proc Natl Acad Sci USA 76:4530–4533

    Google Scholar 

  • Castelfranco PA, Beale SI (1983) Chlorophyll biosynthesis: recent advances and areas of current interest. Annu Rev Plant Physiol 34:241–278

    Google Scholar 

  • Castilho BA, Olfson P, Casadaban MJ (1984) Plasmid insertion mutagenesis and lac gene fusion with mini-Mu bacteriophage transposons. J Bacteriol 158:488–495

    Google Scholar 

  • Cauthen SE, Foster MA, Woods DD (1966) Methionine synthesis by extracts of Salmonella typhimurium. Biochem J 98:630–635

    Google Scholar 

  • Chang GW, Chang JT (1975) Evidence for the B12-dependent enzyme ethanclamine deaminase in Salmonella. Nature 254:150–151

    Google Scholar 

  • Chumley FG, Roth JR (1980) Rearrangement of the bacterial chromosome using Tn10 as a region of homology. Genetics 94:1–14

    Google Scholar 

  • Chumley FG, Menzel R, Roth JR (1979) Hfr formation directed by TN 10. Genetics 91:639–655

    Google Scholar 

  • Clairborne A, Fridovich I (1979) Purification of the o-dianisidine peroxidase from Escherichia coli B. J Biol Chem 254:4245–4252

    Google Scholar 

  • Cox R, Charles HP (1973) Porphyrin-accumulating mutants of Escherichia coli. J Bacteriol 113:122–132

    Google Scholar 

  • Creaghan IT, Guest JR (1978) Succinate dehydrogenase-dependent nutritional requirement for succinate in mutants of Escherichia coli K 12. J Gen Microbiol 107:1–13

    Google Scholar 

  • Davis RW, Botstein D, Roth JR (1980) Advanced bacterial genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Demerec M, Adelberg EA, Clark AJ, Hartman PE (1966) A proposal for a uniform nomenclature in bacterial genetics. Genetics 54:61–76

    Google Scholar 

  • Desrochers M, Peloquin L, Sasarman A. 1978 Mapping of the hemE locus in Salmonella typhimurium. J Bacteriol 135:1151–1153

    Google Scholar 

  • Di Girolamo PM, Kadner RJ, Bradbeer C (1971) Isolation of vitamin B12 transport mutants of Escherichia coli. J Bacteriol 106:751–757

    Google Scholar 

  • Elliott T, Roth JR (1988) Characterization of Tn 10 d-Cam: A transposition-defective Tn 10 specifying chloramphenicol resistance. Mol Gen Genet 213:332–338

    Google Scholar 

  • Escalante-Semerena JC, Roth JR (1987) Regulation of cobalamin biosynthetic operons in Salmonella typhimurium. J Bacteriol 169:2251–2258

    Google Scholar 

  • Fanica-Gaignier M, Clement-Metral J (1973) 5-aminolevulinic acid synthetase of Rhodopseudomonas spheroides Y. Purification and some properties. Eur J Biochem 40:13–18

    Google Scholar 

  • Friedmann HC, Thauer RK (1986) Ribonuclease-sensitive δ-aminolevulinic acid formation from glutamate in cell extracts of Methanobacterium thermoautotrophicum. FEBS Lett 207:84–88

    Google Scholar 

  • Furhop J-H, Smith KM (1975) In: Smith KM (ed) Porphyrins and metalloproteins. Elsevier, New York pp 806–807

    Google Scholar 

  • Gibson KD, Laver WK, Neuberger A (1958) Initial stages in the biosynthesis of porphyrins. 2. The formation of δ-aminolaevulinic acid from glycine and succinyl-coenzyme A by particles from chicken erythrocytes. Biochem J 70:71–81

    Google Scholar 

  • Gollub EG, Liu K-P, Dayan J, Adlersberg M, Sprinson DB (1977) Yeast mutants deficient in heme biosynthesis and a heme mutant additionally blocked in cyclization of 2,3-oxidosqualene. J Biol Chem 252:2846–2854

    Google Scholar 

  • Guerinot ML, Chelm BK (1986) Bacterial δ-aminolevulinic acid synthase activity is not essential for leghemoglobin formation in the soybean/Bradyrhizobium japonicum symbiosis. Proc Natl Acad Sci USA 83:1837–1841

    Google Scholar 

  • Hino S, Ishida A (1973) Effect of oxygen on heme and cytochrome content in some facultative bacteria. Enzyme 16:42–49

    Google Scholar 

  • Hong J-S, Ames BN (1971) Localized mutagenesis of any specific small region of the bacterial chromosome. Proc Natl Acad Sci USA 68:3158–3162

    Google Scholar 

  • Hove-Jensen B (1985) Cloning and characterization of the prs gene encoding phosphoribosylpyrophosphate synthetase of Escherichia coli. Mol Gen Genet 201:269–276

    Google Scholar 

  • Huang D-D, Wang W-Y, Gough SP, Kannangara CG (1984) δ-aminolevulinic acid-synthesizing enzymes need and RNA moiety for activity. Science 225:1482–1484

    Google Scholar 

  • Hughes KT, Roth JR (1984) Conditionally transposition-defective derivative of Mu d 1 (Amp Lac). J Bacteriol 159:130–137

    Google Scholar 

  • Hughes KT, Roth JR (1985) Directed formation of deletions and duplications using Mud (Ap, lac). Genetics 109:263–282

    Google Scholar 

  • Hughes KT, Roth JR (1988) Transitory cis complementation: a method for providing transposition functions to defective transposons. Genetics 119:9–12

    Google Scholar 

  • Ingledew WJ, Poole RK (1984) The respiratory chains of Escherichia coli. Microbiol Rev 48:222–271

    Google Scholar 

  • Ishida A, Hino S (1972) Effect of oxygen on cytochrome pattern and heme synthesis in Escherichia coli. J Gen Appl Microbiol Tokyo 18:225–237

    Google Scholar 

  • Jacobs NJ (1974) Biosynthesis of heme. In: Neilands JB (ed) Microbial iron metabolism. A comprehensive treatise. Academic Press, pp 125–148

  • Janzer JJ, Stan-Lotter H, Sanderson KE (1981) Isolation and characterization of hemin-permeable, envelope-defective mutants of Salmonella typhimurium. Can J Microbiol 27:226–237

    Google Scholar 

  • Jeter R, Escalante-Semerena JC, Roof D, Olivera B, Roth J (1987) Synthesis and use of vitamin B12 in Salmonella and E. coli. In: Ingraham JL, Low KB, Neidhardt FC, Magasanik B, Schaechter M and Umbarger HE (eds) Escherichia coli and Salmonella typhimurium. Cellular and molecular biology, vol 1. American Society for Microbiology. Washington, DC, pp 551–556

    Google Scholar 

  • Jeter RM, Olivera BM, Roth JR (1984) Salmonella typhimurium synthesizes cobalamin (vitamin B12) de novo under anacrobic growth conditions. J Bacteriol 159:206–213

    Google Scholar 

  • Kikuchi G, Kumar A, Talmage P, Shemin D (1958) The enzymatic synthesis of δ-aminolevulinic acid. J Biol Chem 233:1214–1219

    Google Scholar 

  • Kranz RG, Gennis RB (1983) Immunological characterization of the cytochrome o terminal oxidase from Escherichia coli. J Biol Chem 258:10614–10621

    Google Scholar 

  • Kredich NM (1983) Regulation of cysteine biosynthesis in Escherichia coli and Salmonella typhimurium. In: Herrmann KM, Somerville RL (eds) Amino acids: biosynthesis and genetic regulation. Addison Wesley, Reading, MA, pp 115–132

    Google Scholar 

  • Lascelles J (1978) Regulation of pyrrole synthesis. In: Clayton RK, Sistrom WR (eds) The photosynthetic bacteria. Plenum Press, New York, pp 795–808

    Google Scholar 

  • Lascelles J, Altshuler T (1969) Mutant strains of Rhodopseudomonas spheroides lacking δ-aminolevulinate synthase: growth, heme, and bacteriochlorophyll synthesis. J Bacteriol 98:721–727

    Google Scholar 

  • Leong SA, Ditta GS, Helinski DR (1982) Heme biosynthesis in Rhizobium. Identification of a cloned gene coding for δ-aminolevulinate synthase from Rhizobium meliloti. J Biol Chem 257:8724–8730

    Google Scholar 

  • Maloy SR, Nunn WD (1981) Selection for loss of tetracycline resistance by Escherichia coli. J Bacteriol 145:1110–1112

    Google Scholar 

  • McConville ML, Charles HP (1979a) Mutants of Escherichia coli K 12 accumulating porphobilinogen: a new locus, hemC. J Gen Microbiol 111:193–200

    Google Scholar 

  • McConville ML, Charles HP (1979b) Isolation of haemin-requiring mutants of Escherichia coli K12. J Gen Microbiol 113:155–164

    Google Scholar 

  • Neuberger A, Scott JJ (1953) Aminolaevulinic acid and porphyrin biosynthesis. Nature 172:1093–1094

    Google Scholar 

  • Nishioka Y, Demerec M, Eisenstark A (1967) Genetic analysis of aromatic mutants of Salmonella typhimurium. Genetics 56:341–351

    Google Scholar 

  • Powell KA, Cox R, McConville M, Charles HP (1973) Mutations affecting porphyrin biosynthesis in Escherichia coli. Enzyme 16:65–73

    Google Scholar 

  • Richmond MH, Maaloe O (1962) The rate of growth of Salmonella typhimurium with individual carbon sources related to glucose metabolism or to the Krebs cycle. J Gen Microbiol 27:285–297

    Google Scholar 

  • Sanderson KE, Roth JR (1983) Linkage map of Salmonella typhimurium, edn VI Microbiol Rev 47:410–453

    Google Scholar 

  • Sasarman A, Surdeanu M, Horodniceanu T (1968) Locus determining the synthesis of δ-aminolevulinic acid in Escherichia coli K-12. J Bacteriol 96:1882–1884

    Google Scholar 

  • Sasarman A, Sanderson KE, Surdeanu M, Sonea S (1970) Hemindeficient mutants of Salmonella typhimurium. J Bacteriol 102:531–536

    Google Scholar 

  • Sasarman A, Desrochers M, Sonea S, Sanderson KE, Surdeanu M (1976) Porphobilinogen-accumulating mutants of Salmonella typhimurium LT2. J Gen Microbiol 94:359–366

    Google Scholar 

  • Sasarman A, Nepveu A, Echelard Y, Dymetryszyn J, Drolet M, Goyer C (1987) Molecular cloning and sequencing of the hemD gene of Escherichia coli and preliminary data on the Uro operon. J Bacteriol 169:4257–4262

    Google Scholar 

  • Schmid MB, Roth JR (1983) Genetic methods for analysis and manipulation of inversion mutations in bacteria. Genetics 105:517–537

    Google Scholar 

  • Schon A, Krupp G, Gough S, Berry-Lowe S, Kannangara CG, Soll D (1986) The RNA required in the first step of chlorophyll biosynthesis is a chloroplast glutamate tRNA. Science 233:281–284

    Google Scholar 

  • Shemin D, Russell CS (1953) δ-aminolevulinic acid, its role in biosynthesis of porphyrins and purines. J Am Chem Soc 75:4873–4874

    Google Scholar 

  • Siegel LM, Murphy MJ, Kamin H, (1973) Reduced nicotinamide adenine dinucleotide phosphate-sulfite reductase of enterobacteria. I. The Escherichia coli hemoflavoprotein: molecular parameters and prosthetic groups. J Biol Chem 248:251–264

    Google Scholar 

  • Tait GH (1968) General aspects of haem synthesis. In: Goodwin TW (ed) Porphyrins and related compounds. Biochem Soc Symp 28:19–34

  • Tait GH (1973) Aminolaevulinate synthetase of Micrococcus denitrificans. Purification and properties of the enzyme, and the affect of growth conditions on the enzyme activity in cells. Biochem J 131:389–403

    Google Scholar 

  • Tuboi S, Kim HJ, Kikuchi G (1970) Occurrence and properties of two types of δ-aminolevulinate synthetase in Rhodopseudomonas spheroides. Arch Biochem Biophys 138:147–154

    Google Scholar 

  • Vogel HJ, Bonner DM (1956) Acetylornithase of Escherichia coli: partial purification and some properties. J Biol Chem 218:97–106

    Google Scholar 

  • Wang W-Y, Huang D-D, Stachon D, Gough SP, Kannangara CG (1984) Purification, characterization and fractionation of the δ-aminolevulinic acid synthesizing enzymes from light-grown Chlamydomonas reinhardtii cells. Plant Physiol 74:569–379

    Google Scholar 

  • Warnick GR, Burnham BR (1971) Regulation of porphyrin biosynthesis. Purification and characterization of δ-aminolevulinic acid synthase. J Biol Chem 246:6880–6885

    Google Scholar 

  • Way JC, Davis MA, Morisato D, Roberts DE, Kleckner N (1984) New Tn10 derivatives for transposon mutagenesis and for construction of lacZ operon fusions by transposition. Gene 32:369–379

    Google Scholar 

  • Winston F, Botstein D, Miller JH (1979) Characterization of amber and ochre suppressors in Salmonella typhimurium. J Bacteriol 137:433–439

    Google Scholar 

  • Wright MS, Cardin RD, Biel AJ (1987) Isolation and characterization of an aminolevulinate-requiring Rhodobacter capsulatus mutant. J Bacteriol 169:961–966

    Google Scholar 

  • Wulff DL (1967) δ-aminolevulinic acid-requiring mutant from Escherichia coli. J Bacteriol 93:1473–1474

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H. Hennecke

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elliott, T., Roth, J.R. Heme-deficient mutants of Salmonella typhimurium: Two genes required for ALA synthesis. Mol Gen Genet 216, 303–314 (1989). https://doi.org/10.1007/BF00334369

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00334369

Key words

Navigation