Skip to main content
Log in

Formation and fate of cross-links induced by polyfunctional anticancer drugs in yeast

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

A method to detect low levels of interstrand cross-links in DNA of Saccharomyces cerevisiae is described. Isopycnic ultracentrifugation of alkali-treated, unpurified Eaton press homogenates allows the detection of less than one cross-link per yeast chromosome. Efficient separation of single-and double-stranded DNA requires low cell density and addition of glycerol during homogenization. Using a yeast strain defective in excision repair, a dose dependent formation of interstrand cross-links after treatment of cells with biological doses of nitrogen mustard. Triaziquone and Chloramubil could be demonstrated. The most powerful of these alkylating agents is Triaziquone: half of the DNA molecules are shown to be cross-linked after a 12 min exposure to 9×10-9 g/ml of the drug. The cross-linking reaction continues after excessive alkylating agent is removed. After having reached a maximum the fraction continues after excessive alkylating agent is removed. After having reached a maximum the fraction of renaturable DNA decreases upon further incubation. The speed of this “after-reaction” depends on temperature: 48 h after the end of treatment renaturability of DNA has almost completely disappeared when cells are kept at 36° C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Becker, E.F., Zimmerman, B.K., Geiduschek, E.P.: Structure and function of cross-linked DNA. I. Reversible denaturation and Bacillus subtilis transformation. J. Mol. Biol. 8, 377–391 (1964)

    Google Scholar 

  • Bhargava, M.M., Halvorson, H.O.: Isolation of nuclei from yeast. J. Cell Biol. 49, 423–429 (1971)

    Google Scholar 

  • Bicknell, J.N., Douglas, H.C.: Nucleic acid homologies among species of Saccharomyces. J. Bacteriol. 101, 505–512 (1970)

    Google Scholar 

  • Brendel, M., Fäth, W.W.: Isolation and characterization of mutants of Saccharomyces cerevisiae auxotrophic and conditionally auxotrophic for 5′-dTMP. Z. Naturforsch. 29c, 733–738 (1974)

    Google Scholar 

  • Brendel, M., Haynes, R.H.: Kinetics and genetic control of the incorporation of thymidine monophosphate in yeast DNA. Mol. Gen. Genet. 117, 39–44 (1972)

    Google Scholar 

  • Brendel, M., Haynes, R.H.: Interactions among genes controlling sensitivity to radiation and alkylation in yeast. Mol. Gen. Genet. 125, 197–216 (1973)

    Google Scholar 

  • Brookes, P., Lawley, P.D.: The reaction of mono-and difunctional alkylating agents with nucleic acids. Biochem. J. 80, 496–503 (1961)

    Google Scholar 

  • Burnotte, J., Verly, W.G.: A kinetic approach to the mechanism of DNA cross-linking by HNO2. J. Biol. Chem. 246, 5914–5918 (1971)

    Google Scholar 

  • Byers, B, Goetsch, L.: Electron microscopic observations on the meiotic karyotype of diploid and tetraploid Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U.S.A. 72, 5056–5060 (1975)

    Google Scholar 

  • Cole, R.S.: Inactivation of E. coli and bacteriophage lambda by psoralen plus 360 nm-light: Significance of DNA-crosslinks. J. Bacteriol. 107, 846–852 (1971)

    Google Scholar 

  • Connors, T.A., Double, J.A.: Alkylation of the DNA of sensitive and resistant tumors by a nitrogen mustard derivative. Int. J. Cancer 5, 375–383 (1970)

    Google Scholar 

  • Duffus, J.H.: The isolation of nuclei from the yeast Schizosacharomyces pombe. Biochim. Biophys. Acta 195, 230–233 (1969)

    Google Scholar 

  • Eaton, N.R.: New press for disruption of microorganisms. J. Bacteriol. 83, 1359–1360 (1962)

    Google Scholar 

  • Fahrig, R.: Development of host-mediated mutagenicity tests yeast systems. II. Recovery of yeast cells out of tests, liver, lung and peritoneum of rats. Mutat. Res. 31, 381–394 (1975)

    Google Scholar 

  • Fäth, W.W., Brendel, M.: Specific DNA-labelling by exogenous thymidine-5′-monophosphate in Saccharomyces cerevisiae. Mol. Gen. Genet. 131, 57–67 (1974)

    Google Scholar 

  • Fäth, W.W., Brendel, M.: Isolation and properties of yeast mutants with highly efficient thymidylate utilization. Z. Naturforsch. 31c, 468–478 (1976)

    Google Scholar 

  • Fäth, W.W., Brendel, M., Laskowski, W., Lehmann-Braums, E.: Economizing DNA-specific labelling by deoxythymidine-5′-monophosphate in Saccharomaces cerevisiae. Mol. Gen. Genet. 132, 335–345 (1974)

    Google Scholar 

  • Geiduschek, E.P.: “Reversible” DNA. Proc. Natl. Acad. Sci. U.S.A. 47, 950–955 (1961)

    Google Scholar 

  • Goldenberg, G.J., Vanstone, C.L.: Binding of 14C-nitrogen mustard to DNA, RNA and protein of HN2-sensitive and resistant L5178Y Lymphoblasts. Proc. Am. Ass. Cancer Res. 10, 30 (1969)

    Google Scholar 

  • Grunicke, H., Bock, K.W., Becher, H., Gäng, V., Schnierda, J., Puschendorf, B.: Effect of alkylating antitumor agents on the binding of DNA to protein. Cancer Res. 33, 1048–1053 (1973)

    Google Scholar 

  • Hartwell, L.H.: Biochemical genetics of yeast. Ann. Rev. Genet. 4, 373–397 (1970)

    Google Scholar 

  • Haynes, R.H., Barclay, B.J., Eckhardt, F., Landman, O., Kunz, B., Little, J.G.: Genetic control of DNA repair in yeast. Proc. XIV. Internat. Congr. Genetics (in press)

  • Holzer, H., Kröger, H.: Zum carcinostatischen Wirkungsmechanismus von Äthylenimin-Verbindungen. Biochem. Z. 330, 579–590 (1958)

    Google Scholar 

  • Inaba, M., Sakurai, Y.: Mechanism of resistance of Yoshida sarcoma to nitrogen mustard. Int. J. Cancer 7, 430–435 (1971)

    Google Scholar 

  • Klamerth, O.L., Kopun, M.: The influence of Trenimon upon deoxyribonucleic acid in vitro. Eur. J. Biochem. 21, 199–203 (1971)

    Google Scholar 

  • Klatt, O., Stehlin, J.S., McBridge, C., Griffin, A.C.: The effect of nitrogen mustard treatment on the deoxyribonucleic acid of sensitive and resistant Ehrlich tumor cells. Cancer. Res. 29, 286–290 (1969)

    Google Scholar 

  • Kohn, K.W., Spears, C.L., Doty, P.: Inter-strand cross-linking of DNA by nitrogen mustard. J. Mol. Biol. 19, 266–288 (1966)

    Google Scholar 

  • Kummer, D., Ochs, H.D.: Differenzierung der Wirkungsmechanismen alkylierender Cytostatika an Ehrlich-Ascitescarcinomund lymphatischen Leukämiezellen. Z. Krebsforsch. 73, 315–328 (1970)

    Google Scholar 

  • Lawley, P.D., Brookes, P.: Further studies on the alkylation of nucleic acids and their constituent nucleotides. Biochem. J. 89, 127–138 (1963)

    Google Scholar 

  • Lawley, P.D., Brookes, P.: Interstrand cross-linking of DNA by difunctional alkylating agents. J. Mol. Biol. 25, 143–160 (1967)

    Google Scholar 

  • Lawley, P.D., Lethbridge, J.H., Edwards, P.A., Shooter, K.V.: Inactivation of bacteriophage T7 by mono-and difunctional sulphur mustards in relation to cross-linking and depurination of bacteriophage DNA. J. Mol. Biol. 39, 181–198 (1969)

    Google Scholar 

  • Liss, E., Schmidt, H., Schaumlöffel, E., Palme, G.: Alkylierung der DNA verschiedener Tumorzellarten nach in vivo Gabe von Cyclophosphamid. Z. Krebsforsch. Klin. Onkol. 80, 239–245 (1973)

    Google Scholar 

  • Meselson, M., Stahl, F.W., Vinograd, J.: Equilibrium sedimentation of macromolecules in density gradients. Proc. Natl. Acad. Sci. U.S.A. 43, 581–588 (1957)

    Google Scholar 

  • Mohn, G., Ellenberger, J., McGregor, D., Merker, H.: Mutagenicity studies in microorganisms in vitro, with extracts of mammalian organs, and with the host mediated assay. Mutat. Res. 29, 221–233 (1975)

    Google Scholar 

  • Mortimer, R.K., Hawthorne, D.C.: Genetic mapping in Saccharomyces. I.V. Mapping of temperature-sensitive genes and use of disomic strains in localizing genes. Genetics 74, 33–54 (1973)

    Google Scholar 

  • Moustacchi, E., Williamson, H.D.: Physiological variations in satellite components of yeast DNA detected by density gradient centrifugation. Biochem. Biophys. Res. Commun. 23, 56–61 (1966)

    Google Scholar 

  • Parry, J.M., Davies, P.J., Evans, W.E.: The effect of “cell age” upon the lethal effects of physical and chemical mutagens in the yeast, Saccharomyces cerevisiae. Mol. Gen. Genet. 146, 27–35 (1976)

    Google Scholar 

  • Poynter, R.W.: Studies on the mechanism of resistance to alkylating agents of three ascites tumors in the rat. Biochem. Pharmacol. 19, 1387–1397 (1970)

    Google Scholar 

  • Prakash, L, Strauss, B.: Repair of alkylation damage: Stability of methyl groups in Bacillus subtilis treated with methyl methanesulfonate. J. Bacteriol. 102, 760–766 (1970)

    Google Scholar 

  • Resnick, M.A., Setlow, J.K.: Repair of pyrimidine dimer damage induced in yeast by ultraviolet light. J. Bacteriol. 109, 979–986 (1972)

    Google Scholar 

  • Ruhland, A., Fleer, R., Brendel, M.: Genetic activity of chemicals in yeast: DNA alterations and mutations induced by alkylating anti-cancer agents. Mutat. Res. 58, 241–250 (1978)

    Google Scholar 

  • Rutman, R.J., Chun, E.H.L., Jones, J.: Observations on the mechanism of the alkylation reaction between nitrogen mustard and DNA. Biochim. Biophys. Acta 174, 663–673 (1969)

    Google Scholar 

  • Schlaeger, R., Oldekop, M.M., Hilz, H.: Complete dissoziation of HeLa cell growth from cell division by an alkylating agent. Hoppe Seylers Z. Physiol. Chem. 351, 239–248 (1970)

    Google Scholar 

  • Siebert, D.: A new method for testing genetically active metabolites: Urinary assay with Cyclophosphamide and Saccharomyces cerevisiae. Mutat. Res. 17, 307–314 (1973)

    Google Scholar 

  • Verly, W.G., Brakier, L.: The lethal action of monofunctional and bifunctional alkylating agents on T7 coliphage. Biochim. Biophys. Acta 174, 674–685 (1969)

    Google Scholar 

  • Wheeler, G.P., Alexander, J.A.: Studies with mustards. V. In vivo fixation of C14 of labeled alkylating agents by bilaterally grown sensitive and resistant tumors. Cancer Res. 24, 1331–1337 (1964)

    Google Scholar 

  • Wolf, H., Raydt, G., Puschendorf, B., Grunicke, H.: Effect of the alkylating agent triethyleneiminobenzoquinone on the synthesis of DNA and on the incorporation of 3H lysine into nuclear proteins of Ehrlich ascites tumor cells. FEBS Letters 35, 336–340 (1973)

    Google Scholar 

  • Wolpert, M.K., Ruddon, R.W.: A study on the mechanism of resistance to nitrogen mustard (HN2) in Ehrlich ascites tumor cells: Comparison of uptake of HN2-14C into sensitive and resistant cells. Cancer Res. 29, 873–879 (1969)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by F. Kaudewitz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fleer, R., Brendel, M. Formation and fate of cross-links induced by polyfunctional anticancer drugs in yeast. Molec. Gen. Genet. 176, 41–52 (1979). https://doi.org/10.1007/BF00334294

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00334294

Keywords

Navigation