Skip to main content
Log in

Infrared photoemission of holes from ultrathin (3–20 nm) Pt/Ir-compound silicide films into silicon

  • Surfaces And Multilayers
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The infrared responsivity is measured at low temperature on Schottky barrier detectors having ultrathin (3–20 nm) PtSi, IrSi, and compound silicide films as a metal electrode on p-type silicon. The total yield for internal hole photoemission is 1% per incident photon for PtSi and 0.1% for IrSi at a wavelength of λ=4 μm. The cut-of wavelengths are λ=5.4 μm and λ=8.2 μm for PtSi and IrSi, respectively. The compound silicides fabricated by sequential evaporation of Pt and Ir and subsequent annealing at T=450° C show characteristics identical to that of PtSi.

A Monte Carlo computer modelling is performed to simulate the scattering mechanisms in the thin silicide film leading to hole photoemission across the Schottky barrier into silicon. The optimum emission yield is observed for ultrathin films of the order of a few nanometers. The optimum film thickness is close to the escape depth d esc≈2–3×L el≈5 nm which scales with the mean free path L el for quasi elastic scattering. The enhancement of the internal photoemission in ultrathin silicide films is predominantly due to the increase of the optical photoexcitation density rather than to an increase of the electrical emission yield in thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Yutani, H. Kimata, H. Yagi, J. Nakanishi, S. Nagayashi, N. Tsubouchi: Int'l Electron Devices Meeting IEDM, Washington, DC, paper 7.3 (1991)

  2. W.F. Kosonocky, F.V. Shallcross, T.S. Villani, J.V. Groppe: IEEE Trans. Ed-32, 1564 (1985)

    Google Scholar 

  3. H. Elabd, W.F. Kosonocky: RCA Rev. 43, 569 (1982)

    Google Scholar 

  4. B.Y. Tsaur, M.M. Weeks, R. Trubiano, P.W. Pellegrini, T.R. Yew: IEEE Trans. ED-32, 1564 (1988)

    Google Scholar 

  5. B.Y. Tsaur, C.K. Chen, B.S. Nechay: IEEE EDL-11, 415 (1990)

    Google Scholar 

  6. B.Y. Tsaur, M.M. Weeks, P.W. Pellegrini: IEEE EDL-9, 100 (1988)

    Google Scholar 

  7. W.A. Cabanski, M.J. Schulz: Infrared Phys. 32, 29 (1991)

    Google Scholar 

  8. V.L. Dalal: J. Appl. Phys. 46, 2274 (1971)

    Google Scholar 

  9. V.E. Vickers: Appl.Opt. 10, 2190 (1971)

    Google Scholar 

  10. J.M. Mooney, J. Silvermann: IEEE Trans. ED-32, 33 (1985)

    Google Scholar 

  11. American Inst. of Physics Handbook, ed. by D.E. Gray, 2nd edn. (McGraw-Hill, New York 1963) p. 6–107

    Google Scholar 

  12. J.M. Pimbley, W. Katz: Appl. Phys. Lett. 42, 984 (1983)

    Google Scholar 

  13. G.D. Mahan, D.T.F. Marple: Appl. Phys. Lett. 42, 219 (1983)

    Google Scholar 

  14. C.K. Chen, B.Y. Tsaur, M.C. Finn: Appl. Phys. Lett. 54, 310 (1989)

    Google Scholar 

  15. M. Herzberger, C.D. Salzberg: J. Opt. Soc. Am. 52, 420 (1962)

    Google Scholar 

  16. American Inst. of Physics Handbook, ed. by D.E. Gray, 2nd edn. (McGraw-Hill, New York 1963) p. 6–107

    Google Scholar 

  17. Th. Flohr, M. Schulz: Appl. Phys. Lett. 48, 1534 (1986)

    Google Scholar 

  18. S.W. Ducket: Phys. Rev. 166, 302 (1968)

    Google Scholar 

  19. R.N. Stuart, F. Wooten: Phys. Rev. 156, 364 (1987)

    Google Scholar 

  20. J.M. Egan: Infrared Phys. 31, 395 (1991)

    Google Scholar 

  21. R.H. Fowler: Phys. Rev. 38, 45 (1931)

    Google Scholar 

  22. J. van der Ohe, J. Siebeneck, U. Suckow, M. Königer, W. Platz, L. Senatori: SPIE 865, 71 (1987)

    Google Scholar 

  23. W. Cabanski, M.J. Schulz SPIE 659, 171 (1986)

    Google Scholar 

  24. J.H. Werner, H. Güttler: J. Appl. Phys. 69, 1522 (1991)

    Google Scholar 

  25. U. Rau, H. Güttler, J.H. Werner: Proc. Int'l Conf. on Noise in Phys. Systems and 1/f fluctuations, ed. by T. Musha, M. Yamamoto (Ohmsha, Kyoto 1991) p. 213

    Google Scholar 

  26. J.J. Quinn: Phys.Rev. 126, 1453 (1962)

    Google Scholar 

  27. J. Abelson, R. Helms: J. Appl. Phys. 63, 689 (1988)

    Google Scholar 

  28. W. Cabanski, M. Schulz: SPIE 1484, 81 (1991)

    Google Scholar 

  29. P.W. Pellegrini, A. Golusovic, C.E. Ludington, M.M. Weeks: IEDM Tech. Dig. (1982) p. 157

  30. B.-Y. Tsaur, M.J. McNutt, R.A. Bredthauer, R.B. Mattson: IEEE-Trans. EDL-10, 361 (1989)

    Google Scholar 

  31. J.M. Poate, T.C. Tisone: Appl. Phys. Lett. 24, 391 (1974)

    Google Scholar 

  32. G. Ottaviani: J. Vac. Sci. Technol. 16, 1112 (1979)

    Google Scholar 

  33. S. Peterson, J. Baglin, W. Hammer, F. D'Heurle, T.S. Kuan, I. Ohdomari, J. de Sousa Pires, P. Tove: J. Appl. Phys. 50, 3357 (1979)

    Google Scholar 

  34. S.M. Sze: Physics of Semiconductor Devices, 2nd edn. (Wiley, New York 1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Czernik, A., Palm, H., Cabanski, W. et al. Infrared photoemission of holes from ultrathin (3–20 nm) Pt/Ir-compound silicide films into silicon. Appl. Phys. A 55, 180–191 (1992). https://doi.org/10.1007/BF00334221

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00334221

PACS

Navigation