Skip to main content
Log in

Non-intrusive mapping of subsurface defects in semiconductors

  • Solids And Materials
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We have adapted differential interference contrast Nomarski microscopy in the transmission configuration to the problem of mapping subsurface defects in semiconductors. We have demonstrated the ability to rapidly measure the depth of the precipitate-free-zone in silicon with a reproducibility of ±1 μm in whole Si wafers up to 200 nm in diameter, having an extrinsic doping concentration up to 7×1019 cm−3 and a nominal, as received, back side roughness. Because our subsurface defect profiler is completely non-destructive, product wafers can be inspected at various stages of processing and immediately returned to the production line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.E. Buckley: Crystal Growth (Wiley, New York 1951)

    Google Scholar 

  2. W.K. Tice, T.Y. Tan: Appl. Phys. Lett. 28, 564 (1976)

    Google Scholar 

  3. T.Y. Tan, E.E. Gardner, W.K. Tice: Appl. Phys. Lett. 30, 175 (1977)

    Google Scholar 

  4. W.J. Taylor, T.Y. Tan, U.M. Gösele: Appl. Phys. Lett. 59, 2007 (1991)

    Google Scholar 

  5. N. Nakuda, J. Lagowski, H.C. Gatos, C.-J. Li: Appl. Phys. Lett. 46, 673 (1985)

    Google Scholar 

  6. F. Shimura, R.S. Hockett, D.A. Reed, H.D. Wayne: Appl. Phys. Lett. 47, 794 (1985)

    Google Scholar 

  7. P.F. Kane, G.B. Larrabee: Characterization of Semiconductor Materials (McGraw-Hill, New York 1979)

    Google Scholar 

  8. K.H. Yang: A Preferential Etch for Silicon Crystals, In Semiconductor Processing, ASTM STP 850, Ed. by D.C. Gupta (American Society for Testing and Materials 1984)

  9. M.G. Nomarski: J. Phys. Radium 16, 9S (1955)

  10. J.S. Batchelder, M.A. Taubenblatt: Appl. Phys. Lett. 55, 215 (1989)

    Google Scholar 

  11. R.W. Boyd: J. Opt. Soc. Am. 70, 877 (1980)

    Google Scholar 

  12. K. Jain, S. Lai, M.V. Klein: Phys. Rev. B 13, 5448 (1967)

    Google Scholar 

  13. W. Spitzer, H.Y. Fan: Phys. Rev. 108, 258 (1957)

    Google Scholar 

  14. H.Y. Fan, M. Becker: Infrared Optical Properties of Silicon and Germanium, In Semiconducting Materials, Ed. by H.K. Henisch (Butterworth, London 1951)

    Google Scholar 

  15. The heating cycle used to cause full precipitation of the oxygenrich CZ sample shown in Fig. 1 is as follows: hold at 800° C in O2 for 3 h and in N2 for 4 h; heat to 1000° C at 5° C/min in N2 and hold at 1000° C for 4 h; cool to 800° C at 3° C/min in N2 and hold at 800° C for 4 h; cool to room temperature at 3° C/min

  16. At normal incidence the ratio of apparent depth to true depth in a medium with index of refraction n is 1/n. This is taken into account in the depth scale in Fig. 1

  17. See, for example, A. Bourret: Oxygen Aggregation in Silicon, In 13th International Conference on Defects in Semiconductors, Ed. by L.C. Kimerling, J.M. Parsey, Jr. (The Metallurgical Society of AIME, Warrendale, Pennsylvania 1985) V. 14a, p. 129

    Google Scholar 

  18. Amnon Yariv: Quantum Electronics, 2nd edn. (Wiley, New York 1975), p. 109

    Google Scholar 

  19. H.H. Li: J. Phys. Chem. Ref. Data 9, 561 (1980)

    Google Scholar 

  20. P.S. Theocaris, E.E. Gdoutos: Matrix Theory of Photoelasticity (Springer, Berlin, Heidelberg 1979) p. 105

    Google Scholar 

  21. J.F. Nye: Physical Properties of Crystals (Pergamon, Oxford 1970) p. 665

    Google Scholar 

  22. C.W. Higginbothan, M. Cardona, F.H. Pollak: Phys. Rev. 184, 821 (1969)

    Google Scholar 

  23. A.G. Cullis, P.D. Augustus, D.J. Stirlaand: J. Appl. Phys. 51, 2556 (1980)

    Google Scholar 

  24. J.P. Cornier, M. Duseaux, J.P. Chevalier: Appl. Phys. Lett. 45, 1105 (1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guidotti, D., Taubenblatt, M.A., Batchelder, S.J. et al. Non-intrusive mapping of subsurface defects in semiconductors. Appl. Phys. A 55, 139–143 (1992). https://doi.org/10.1007/BF00334212

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00334212

PACS

Navigation