Molecular and General Genetics MGG

, Volume 117, Issue 4, pp 303–309 | Cite as

Biochemical and genetic studies of recombination proficiency in Escherichia coli K12

IV. Analysis of recombinants formed by a recombination deficient (recB21 recC22) strain
  • Stephen D. Barbour


Residual genetic recombination is carried out by recB-recC- mutants of E. coli. Recombinants (for one gene) formed by a recB-recC- parent were shown to be as recombination deficient as their parent, when recombination of a second gene is measured. Therefore the resididual recombination cannot be attributed to a genetically recombination proficient fraction of the parent recB-recC- culture. I conclude that each recB-recC- parent cell is capable of carrying out genetic recombination. This conclusion is consistent with the existence of an alternate (and minor) recombination mechanism in E. coli K12, independent of the recB+recC+ mediated steps.


Recombination Genetic Study Parent Cell Genetic Recombination Recombination Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barbour, S. D., Clark, A. J.: Biochemical and genetic studies of recombination proficiency in Escherichia coli, 1. Enzymatic activity associated with recB + and recC + genes. Proc. nat. Acad. Sci. (Wash.) 65, 955–961 (1970)CrossRefGoogle Scholar
  2. Barbour, S. D., Nagaishi, H., Templin, A., Clark, A. J.: Biochemical and genetic studies of recombination proficiency in Escherichia coli. II. Rec+ revertants caused by indirect suppression of Rec- mutations. Proc. nat. Acad. Sci. (Wash.) 67, 128–135 (1970).CrossRefGoogle Scholar
  3. Buttin, G., Wright, M.: Enzymatic DNA degradation in E. coli: Its relationship to synthetic processes in the chromosome level. Cold Spr. Harb. Symp. quant. Biol. 33, 259–269 (1968).CrossRefGoogle Scholar
  4. Capaldo-Kimball, F., Barbour, S. D.: Involvement of recombination genes in growth and viability of Escherichia coli K12. J. Bact. 106, 204–212 (1971).PubMedGoogle Scholar
  5. Clark, A. J.: The beginning of a genetic analysis of recombination proficiency. J. Cell Physiol. 70, Suppl. 1, 165–180 (1967).CrossRefGoogle Scholar
  6. Demerec, M., Adelberg, E. A., Clark, A. J., Hartman, P. E.: A proposal for a uniform nomenclature in bacterial genetics. Genetics 54, 61–76 (1966).PubMedPubMedCentralGoogle Scholar
  7. Emmerson, P. T.: Recombination deficient mutants of Escherichia coli K12 that map between thyA and argA. Genetics 60, 19–30 (1968).PubMedPubMedCentralGoogle Scholar
  8. Kushner, S. R., Nagaishi, H., Templin, A., Clark, A. J.: Genetic recombination in Escherichia coli: The role of exonuclease I. Proc. nat. Acad. Sci. (Wash.) 68, 824–827 (1971).CrossRefGoogle Scholar
  9. Low, B.: Formation of merodiploids in matings with a class of Rec- recipient strains of Escherichia coli K12. Proc. nat. Acad. Sci. (Wash.) 60, 160–167 (1968).CrossRefGoogle Scholar
  10. Oishi, M.: An ATP-dependent deoxyribonuclease from Escherichia coli with a possible role in genetic recombination. Proc. nat. Acad. Sci. (Wash.) 64, 1292–1299 (1969).CrossRefGoogle Scholar
  11. Taylor, A. L.: Current linkage map of Escherichia coli. Bact. Rev. 34, 155–175 (1970).PubMedGoogle Scholar
  12. Willetts, N. S., Clark, A. J., Low, B.: Genetic location of certain mutations conferring recombination deficiency in Escherichia coli. J. Bact. 97, 244–249 (1969).PubMedGoogle Scholar
  13. Willetts, N. S., Mount, D. W.: Genetic analysis of recombination-deficient mutants of Escherichia coli K-12 carrying rec mutations cotransducible with thyA. J. Bact. 100, 923–934 (1969).PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • Stephen D. Barbour
    • 1
  1. 1.Department of Microbiology, Case Western ReserveSchool of MedicineClevelandUSA

Personalised recommendations