Skip to main content
Log in

Two membrane sites for DNA synthesis in Pneumococcus

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

A DNA membrane fraction extracted from pneumococci can be separated into two subfractions with respect to macromolecular composition and DNA synthesis by centrifugation in a 30–60% w/v neutral sucrose gradient. Each fraction can be rebanded in a sucrose gradient or centrifuged to equilibrium in a CsCl density gradient without altering the ability of the fractions to synthesize DNA. The fast sedimenting (heavy) fraction contains 45% of the DNA, and the bulk of the phospholipid, protein, and RNA. The light fraction contains 50% of the DNA, and lower, but significant amounts of phospholipid, RNA, and protein. Both fractions contain a DNA replication complex consisting of a number of enzymes involved in synthesizing DNA or DNA precursors, as well as RNA polymerase activity. However, the specific activity of DNA polymerase in the light fraction is much greater than that in the heavy fraction. In addition, the following results suggest that the former is concerned primarily with replication of the genome while the latter has characteristics of a repair function for the genome. (1) newly synthesized DNA can be detected within 30 s in the light fraction but not until 4 min in the heavy fraction. (2) an RNA-DNA single-stranded hybrid can be demonstrated during initial stages of DNA synthesis in the light, but not heavy fraction. (3) extensive semiconservative DNA replication occurs in the light fraction, whereas little such replication is detected in the heavy fraction. (4) DNA polymerase activity in the light fraction has several of the characteristics of a polymerase identified by others as being concerned with normal DNA replication, such as inhibition by N-ethylmaleimide, and relatively high rates of chain elongation (4.9×104 nucleotides/min). In contrast, DNA polymerase activity in the heavy fraction has characteristic properties associated with DNA polymerase I, a possible repair enzyme. These include higher activity for a d(A-T)n template than that detected in the light fraction, no effect of N-ethylmaleimide, and relatively low rates of chain elongation (9×103 nucleotides/min).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brutlag, D., Schekman, R., Kornberg, A.: A possible role for RNA polymerase in the initiation of M13 DNA synthesis. Proc. nat. Acad. Sci. (Wash.) 68, 2826 (1971)

    Google Scholar 

  • Dworsky, P., Schaechter, M.: Effect of rifampin on the structure and membrane attachment of the nucleoid of Escherichia coli. J. Bact. 116, 1364 (1973)

    Google Scholar 

  • Firshein, W.: Influence of DNA degradation products and orthophosphate on deoxynucleotide kinase activity and DNA synthesis in Pneumococcus type III. J. Bact. 90, 327 (1965)

    Google Scholar 

  • Firshein, W.: The DNA membrane fraction of Pneumococcus contains a DNA replication complex. J. molec. Biol. 70, 383 (1972)

    Google Scholar 

  • Firshein, W.: In situ activity of enzymes on polyacrylamide gels of a deoxyribonucleic acid membrane fraction extracted from pneumococci. J. Bact. 118, 1101 (1974)

    Google Scholar 

  • Firshein, W., Benson, R.C.: Effects of polyribonucleotides of known composition on deoxycytidylate and deoxyguanylate kinase activity in pneumococci. J. biol. Chem. 243, 3301 (1968)

    Google Scholar 

  • Firshein, W., Schwenzfeier, C.W.: Characterization of excess DNA synthesized by pneumococci in the presence of polyadenylic acid and DNA precursors. J. Bact. 97, 1106 (1969)

    Google Scholar 

  • Gass, K.B., Cozzarelli, N.R.: Bacillus subtilis DNA polymerases. In: Methods in enzymology, Vol. XXIX, Part e (eds. L. Grossman and K. Moldave), p. 27. New York: Academic Press Inc. 1974

    Google Scholar 

  • Gefter, M.L., Kornberg, T., Molineux, I.J., Khorana, H.G., Mendich, L., Hirota, Y.: Studies on DNA polymerases II and III of Escherichia coli. In: DNA synthesis in vitro. Second Annual H. Steenbock Symp. (eds. R.D. Wells and R.B. Inman), p. 71. Baltimore: University Park Press 1973

    Google Scholar 

  • Helmstetter, C., Cooper, S., Pierucci, O., Revelas, E.: On the bacterial life sequence. Cold Spr. Harb. Symp. quant. Biol. 33, 809 (1968)

    Google Scholar 

  • Hirose, S., Okazaki, R., Tamanoi, F.: Mechanism of DNA chain growth. XI. Structure of RNA-linked fragments of Escherichia coli. J. molec. Biol. 77, 501 (1973)

    Google Scholar 

  • Hotchkiss, R.D., Evans, A.H.: Analysis of the complex sulfonamide restistance locus of Pneumococcus. Cold Spr. Harb. Symp. quant. Biol. 23, 85 (1958)

    Google Scholar 

  • Knippers, R., Stratling, W.: The DNA replicating capacity of isolated E. coli cell wall-membrane complexes. Nature (Lond.) 226, 713 (1970)

    Google Scholar 

  • Kornberg, A.: Active center of DNA polymerase. Science 163, 1410 (1969)

    Google Scholar 

  • Kornberg, T., Gefter, M.L.: Deoxyribonucleic acid polymerase III (Escherichia coli K12). In: Methods in enzymology, Vol. XXIX, Part e (eds. L. Grossman and K. Moldave), p. 22. New York: Academic Press 1974

    Google Scholar 

  • Kornberg, T., Lockwood, A., Worcel, A.: Replication of the Escherichia coli chromosome with a soluble enzyme system. Proc. nat. Acad. Sci. (Wash.) 71, 3189 (1974)

    Google Scholar 

  • Lehman, I.R., Chien, J.R.: DNA polymerase I activity in polymerase I mutants of Escherichia coli. In: DNA synthesis in vitro. Second Annual H. Steenbock Symposium (eds. R.D. Wells and R.B. Inman), p. 3. Baltimore: University Park Press 1973

    Google Scholar 

  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J.: Protein measurement with the folin phenol reagent. J. biol. Chem. 193, 265 (1951)

    Google Scholar 

  • Magnusson, G., Pigiet, V., Winnacker, E.L., Abrams, R., Reichard, P.: RNA-linked short DNA fragments during polyoma replication. Proc. nat. Acad. Sci. (Wash.) 70, 412 (1973)

    Google Scholar 

  • Slater, J., Schaechter, M.: Control of cell division in bacteria. Bact. Rev. 38, 199 (1974)

    Google Scholar 

  • Smith, D.W., Hanawalt, P.C.: Properties of the growing point region in the bacterial chromosome. Biochim. biophys. Acta (Amst.) 149, 519 (1967)

    Google Scholar 

  • Smith, D.W., Schaller, H.E., Bonhoeffer, F.J.: DNA synthesis in vitro. Nature (Lond.) 226, 711 (1970)

    Google Scholar 

  • Sueoka, N., Hammers, J.: Isolation of DNA-membrane complex in Bacillus subtilis. Proc. nat. Acad. Sci. (Wash.) 71, 4787 (1974)

    Google Scholar 

  • Sueoka, N., Matsushita, T., Ohi, S., O'Sullivan, A., White, K.: In vivo and in vitro chromosome replication in Bacillus subtilis. In: DNA synthesis in vitro. Second Annual H. Steenbock Symp. (eds. R.D. Wells and R.B. Inman), p. 405. Baltimore: University Park Press 1973

    Google Scholar 

  • Sueoka, N., Quinn, W.G.: Membrane attachment of the chromosome replication origin in Bacillus subtilis. Cold Spr. Harb. Symp. quant. Biol. 33, 695 (1968)

    Google Scholar 

  • Sugino, A., Hirose, S., Okazaki, R.: RNA-linked nascent DNA fragments in Escherichia coli. Proc. nat. Acad. Sci. (Wash.) 69, 1862 (1972)

    Google Scholar 

  • Wickner, R.B., Ginsberg, B., Berkower, I., Hurwitz, J.: Deoxyribonucleic acid polymerase II of Escherichia coli. J. biol. Chem. 247, 489 (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by F. Gros

Rights and permissions

Reprints and permissions

About this article

Cite this article

Firshein, W. Two membrane sites for DNA synthesis in Pneumococcus . Molec. Gen. Genet. 148, 323–335 (1976). https://doi.org/10.1007/BF00332907

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00332907

Keywords

Navigation