Skip to main content
Log in

Ion-beam-induced atomic transport and phase formation in the system nickel/antimony

Part II: Phase formation in mixed multilayers observed by XRD and PAC

  • Surfaces And Multilayers
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Sb/Ni multilayers of 200 nm total thickness were ion-beam mixed with 900 keV Xe++ or 600 keV Ar++ ions using fluences up to 1016 ions/cm2. The formation of crystalline intermetallic phases was observed by X-ray diffraction (XRD). To investigate, on a microscopic scale, the mixing-effects the perturbed angular correlation (PAC) technique was applied using some 1012 implanted radioactive 111In ions. The different phases were identified in the PAC spectra by comparison with those taken for single-phase material of intermetallic Ni/Sb compounds and pure Ni and Sb. After the 111In implantation usually up to 50% of the probes are found with PAC-parameters typical for the single metallic layers. The rest of the probes showed a complex mixture of electric field gradients (EFG). During ion-beam mixing this fraction increased to 100%. In some experiments individual EFGs were resolved indicating the formation of crystalline NiSb and Ni5Sb2 intermetallic phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.R. Rehn, P.R. Okamoto: Nucl. Instrum. Methods B 39, 104 (1989)

    Google Scholar 

  2. W.L. Johnson, Y.-T. Cheng, M. von Rossum, M.A. Nicolet: Nucl. Instrum. Methods B 7/8, 657 (1985)

    Google Scholar 

  3. R.S. Averback: Nucl. Instrum. Methods B 15, 675 (1986)

    Google Scholar 

  4. P. Sigmund, A. Gras-Marti: Nucl. Instrum. Meth. 182/183, 25 (1981)

    Google Scholar 

  5. Y.-T. Cheng: Mater. Sci. Rep. 5, 45 (1990)

    Google Scholar 

  6. W. Bolse: Nucl. Instrum. Methods B 80/81, 137 (1993)

    Google Scholar 

  7. T. Weber, K.P. Lieb: J. Appl. Phys. 73, 3499 (1993)

    Google Scholar 

  8. F. Shi, T. Weber, W. Bolse, K.P. Lieb: Appl. Phys. A 57, 343 (1993)

    Google Scholar 

  9. G.H. Vineyard: Rad. Eff. 29, 245 (1976)

    Google Scholar 

  10. T. Weber, K.P. Lieb, M. Uhrmacher: Surf. and Interf. Analysis 17, 330 (1991)

    Google Scholar 

  11. T. Weber, K.P. Lieb: Nucl. Instrum. Methods B 64, 846 (1992)

    Google Scholar 

  12. P. Wodniecki, T. Corts, K.P. Lieb, M. Uhrmacher: Nucl. Instrum. Methods B 62, 394 (1992)

    Google Scholar 

  13. M. Uhrmacher, K. Pampus, F.J. Bergmeister, D. Purschke, K.P. Lieb: Nucl. Instrum. Methods B 9, 234 (1985)

    Google Scholar 

  14. See, for example, H. Frauenfelder, R.M. Steffen: In: Alpha, Beta, and Gamma Ray Spectroscopy, ed. by K. Siegbahn (North-Holland, Amsterdam 1979) p. 337

    Google Scholar 

  15. W. Bolse, M. Uhrmacher, K.P. Lieb: Phys. Rev. B 36, 1818 (1987)

    Google Scholar 

  16. D. Wegner: Hyp. Int. 23, 179 (1985)

    Google Scholar 

  17. P. Heubes, D. Korn, G. Schatz, G. Zibold: In Nuclear and Electron Resonance Spectroscopies Applied to Materials Science, ed. by E.N. Kaufmann, G.K. Schenoy (Elsevier North-Holland, New York 1979) p. 385

    Google Scholar 

  18. P. Heubes, D. Korn, G. Schatz, G. Zibold: Phys. Lett. 74 A, 267 (1979)

    Google Scholar 

  19. R.J. Vianden: Hyp. Int. 35, 1079 (1987)

    Google Scholar 

  20. S.A. Lis, R.A. Naumann: Hyp. Int. 3, 283 (1977)

    Google Scholar 

  21. H. Haas, D.A. Shirley: J. Chem. Phys. 58, 3339 (1973)

    Google Scholar 

  22. H. Haas, M. Menningen: Hyp. Int. 9, 277 (1981)

    Google Scholar 

  23. W. Witthuhn: Hyp. Int. 24, 547 (1985)

    Google Scholar 

  24. H. Barfuß, G. Böhnlein, H. Hohenstein, W. Kreische, M. Meinhold, H. Niedrig: Phys. Lett. 79 A, 252 (1980)

    Google Scholar 

  25. C. Hohenemser, T. Kachnowski, T.K. Bergstresser: Phys. Rev. B 13, 3154 (1976)

    Google Scholar 

  26. F. Pleiter, C. Hohenemser: Phys. Rev. B 25, 106 (1982)

    Google Scholar 

  27. C. Hohenemser, A.R. Arends, H. de Waard, H.G. Devare, F. Pleiter, S.A. Drentje: Hyp. Int. 3, 297 (1977)

    Google Scholar 

  28. C. Allard, G.S. Collins, C. Hohenemser: Phys. Rev. B 32, 4839 (1985)

    Google Scholar 

  29. F. Raether, G. Weyer, K.P. Lieb, J. Chevallier: Z. Phys. B 73, 467 (1989)

    Google Scholar 

  30. P. Wodniecki, M. Uhrmacher: Appl. Phys. A 57 (1993, in press)

  31. A.F. Pasquevich, M. Uhrmacher, L. Ziegeler, K.P. Lieb: Phys. Rev. in press

  32. A. Bartos, H. Plank, D. Forkel, S. Jahn, J. Markel, R. Polewka, M. Uhrmacher, S. Winter, W. Witthuhn, the ISOLDE Coll.: J. Less-Common Met. 164/165, 1121 (1990)

    Google Scholar 

  33. Z.Y.A. Al-Tamimi, W.A. Grant, G. Carter: Nucl. Instrum. Methods 209/210, 363 (1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uhrmacher, M., Wodniecki, P., Shi, F. et al. Ion-beam-induced atomic transport and phase formation in the system nickel/antimony. Appl. Phys. A 57, 353–361 (1993). https://doi.org/10.1007/BF00332289

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00332289

PACS

Navigation