Skip to main content
Log in

Investigation of Roman terra sigillata by atomic absorption and emission spectroscopy and multivariate analysis of data

  • Original Papers
  • Analysis Of Inorganic Materials
  • Published:
Fresenius' Journal of Analytical Chemistry Aims and scope Submit manuscript

Summary

Twenty-one sherds of Roman terra sigillata from Augusta Praetoria (Aosta, Italy) have been analyzed by atomic absorption and emission spectroscopy. Ca, Ba, Ti, Cr, Mn, Fe, Cu, and Al were determined by atomic absorption spectroscopy with electrothermal atomization in graphite furnaces; Mg and Sr were determined by inductively coupled plasma emission spectroscopy; Na and K by flame emission spectroscopy. The data obtained have been processed by different methods of multivariate analysis, such as cluster analysis, principal component analysis, and nonlinear mapping. The results indicate that at least three compositional groups can be identified among the studied sherds, probably reflecting different geographical provenances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Widemann F, Picon M, Asaro F, Michel HV, Perlman I (1975) Archaeometry 17:45

    Google Scholar 

  2. Cattling HW, Blin-Stoyle AE, Richards EE (1961) Archaeometry 4:31

    Google Scholar 

  3. Cattling HW, Millett A (1965) Archaeometry 8:3

    Google Scholar 

  4. Harbottle G (1970) Archaeometry 12:23

    Google Scholar 

  5. Bieber AM Jr, Brooks DW, Harbottle G, Sayre EV (1976) Archaeometry 18:59

    Google Scholar 

  6. Lambert JB, McLaughlin CD, Leonard A Jr (1978) Archaeometry 20:107

    Google Scholar 

  7. Jones RE, Mee C (1978) J Field Archaeol 5:461

    Google Scholar 

  8. Mello E, Lusnardis, Meloni S, Oddone M (1982) J Radioanal Chem 69:259

    Google Scholar 

  9. King RH, Rupp DW, Sorenson LW (1986) J Archaeol Sci 13:361

    Google Scholar 

  10. King RH (1987) Appl Clay Sci 2:199

    Google Scholar 

  11. Olin JS, Harbottle G, Sayre EV (1978) In: Archaeological chemistry, vol 2. American Chemical Society, Washington

    Google Scholar 

  12. Maggetti M, Westley H, Olin JS (1984) In: Archaeological chemistry, vol 3. American Chemical Society, Washington

    Google Scholar 

  13. Jornet A, Blackman MJ, Olin JS (1985) In: Ceramics and civilization, ancient technology to modern science. American Ceramic Society, Columbus

    Google Scholar 

  14. Maggetti M (1986) Fortschr Mineral 64:87

    Google Scholar 

  15. Krywonos W, Newton GWA, Robinson VJ, Riley JA (1980) Archaeometry 22:189

    Google Scholar 

  16. Hatcher H, Hedges REM, Pollard AM, Kenrick PM (1980) Archaeometry 22:133

    Google Scholar 

  17. Pike HHM, Fulford MG (1983) Archaeometry 25:77

    Google Scholar 

  18. Picon M, Vichy M, Meille E (1971) Archaeometry 13:191

    Google Scholar 

  19. Picon M, Carre C, Cordoliani ML, Vichy M, Hernandez JA, Mignard JL (1975) Archaeometry 17:191

    Google Scholar 

  20. Schneider G, Hoffmann B (1976) Ber Dtsch Keram Ges 53:417

    Google Scholar 

  21. Maggetti M, Küpfer T (1977) Archaeometry 20:183

    Google Scholar 

  22. Küpfer T, Maggetti M (1978) Schweiz Mineral Petr Mitt 58:189

    Google Scholar 

  23. Maggetti M, Ferreira Marques MF, Schubiger PA (1980) Schweiz Mineral Petr Mitt 60:111

    Google Scholar 

  24. Jornet A (1980) Schweiz Mineral Petr Mitt 60:271

    Google Scholar 

  25. Ballié PJ, Stern WB (1984) Archaeometry 26:62

    Google Scholar 

  26. Wisseman SU, Hopke PK, Schindler-Kaudelka E (1987) Archeomaterials 1:101

    Google Scholar 

  27. Hart FA, Storey JMV, Adams SJ, Symonds RP, Walsh JN (1987) J Archaeol Sci 14:577

    Google Scholar 

  28. Hughes MJ, Cowell MR, Craddock PT (1976) Archaeometry 18:19

    Google Scholar 

  29. Gritton V, Magalousis NM (1978) In: Archaeological chemistry, vol 2. American Chemical Society, Washington

    Google Scholar 

  30. Tubb A, Parker AJ, Nickless G (1980) Archaeometry 22:153

    Google Scholar 

  31. Magalousis NM, Gritton V (1981) In: Scientific studies in ancient ceramics. British Museum, London

    Google Scholar 

  32. Hart FA, Adams SJ (1983) Archaeometry 25:179

    Google Scholar 

  33. Torres LM, Arie AW, Sandoval B (1984) In: Archaeological chemistry, vol 3. American Chemical Society, Washington

    Google Scholar 

  34. Rauret G, Casassas E, Baucells M (1985) Archaeometry 27:195

    Google Scholar 

  35. Stratis JA, Mirtsou EA, Kessissoglou MD (1986) PACT 15:59

    Google Scholar 

  36. Gentner W, Müller O, Wagner GA, Gale NH (1978) Naturwissenschaften 65:273

    Google Scholar 

  37. Tite MS, Bimson M, Freestone IC (1982) Archaeometry 24:117

    Google Scholar 

  38. Gancedo JR, Gracia M, Marco JF, Palacios J (1988) Hyperfine Interact 41:791

    Google Scholar 

  39. Forina M (1984) Trends Anal Chem 3:38

    Google Scholar 

  40. Massart DL, Kaufman L (1983) In: The interpretation of analytical chemical data by the use of cluster analysis. J Wiley, New York

    Google Scholar 

  41. Malinowski ER, Hovery DG (1980) In: Factor analysis in chemistry. J Wiley, New York

    Google Scholar 

  42. Kowalski BR, Bender CF (1972) J Am Chem Soc 94:5632

    Google Scholar 

  43. Wold S, Sjöström M (1977) In: Chemometrics: theory and application. American Chemical Society, Washington

    Google Scholar 

  44. Forina M, Lanteri S, Armanino C (1987) Topics Curr Chem 141:91

    Google Scholar 

  45. Derde MP, Massart DL (1982) Fresenius Z Anal Chem 313:484

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mirti, P., Aruga, R., Zelano, V. et al. Investigation of Roman terra sigillata by atomic absorption and emission spectroscopy and multivariate analysis of data. Fresenius J Anal Chem 336, 215–221 (1990). https://doi.org/10.1007/BF00332256

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00332256

Keywords

Navigation